Let
” defined on
a. Prove that “congruence modulo
” is an equivalence relation.
b. List five members of each of the equivalence classes
Trending nowThis is a popular solution!
Chapter 1 Solutions
Elements Of Modern Algebra
- 4. Let be the relation “congruence modulo 5” defined on as follows: is congruent to modulo if and only if is a multiple of , and we write . a. Prove that “congruence modulo ” is an equivalence relation. b. List five members of each of the equivalence classes and .arrow_forwardTrue or False Label each of the following statements as either true or false. Let be an equivalence relation on a nonempty setand let and be in. If, then.arrow_forwardLet R be the relation defined on the set of integers by aRb if and only if ab. Prove or disprove that R is an equivalence relation.arrow_forward
- Label each of the following statements as either true or false. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is symmetric xRy implies yRx. Since R is transitive xRy and yRx implies xRx. Hence R is alsoreflexive and thus an equivalence relation on A.arrow_forwardLabel each of the following statements as either true or false. If R is an equivalence relation on a nonempty set A, then any two equivalence classes of R contain the same number of element.arrow_forwardLet A=R0, the set of all nonzero real numbers, and consider the following relations on AA. Decide in each case whether R is an equivalence relation, and justify your answers. (a,b)R(c,d) if and only if ad=bc. (a,b)R(c,d) if and only if ab=cd. (a,b)R(c,d) if and only if a2+b2=c2+d2. (a,b)R(c,d) if and only if ab=cd.arrow_forward
- 21. A relation on a nonempty set is called irreflexive if for all. Which of the relations in Exercise 2 are irreflexive? 2. In each of the following parts, a relation is defined on the set of all integers. Determine in each case whether or not is reflexive, symmetric, or transitive. Justify your answers. a. if and only if b. if and only if c. if and only if for some in . d. if and only if e. if and only if f. if and only if g. if and only if h. if and only if i. if and only if j. if and only if. k. if and only if.arrow_forwardIn Exercises , a relation is defined on the set of all integers. In each case, prove that is an equivalence relation. Find the distinct equivalence classes of and list at least four members of each. 10. if and only if .arrow_forwardIn Exercises 1324, prove the statements concerning the relation on the set Z of all integers. If 0xy, then x2y2.arrow_forward
- a. Let R be the equivalence relation defined on Z in Example 2, and write out the elements of the equivalence class [ 3 ]. b. Let R be the equivalence relation congruence modulo 4 that is defined on Z in Example 4. For this R, list five members of equivalence class [ 7 ].arrow_forward[Type here] 7. Let be the set of all ordered pairs of integers and . Equality, addition, and multiplication are defined as follows: if and only if and in , Given that is a ring, determine whether is commutative and whether has a unity. Justify your decisions. [Type here]arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,