College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 57P
(a) How many excess electrons must be distributed uniformly within the volume of an isolated plastic sphere 30.0 cm in diameter to produce an electric field of 1150 N/C just outside the surface of the sphere? (b) What is the electric field at a point 10.0 cm outside the surface of the sphere?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At what distance along the central axis of a uniformly charged plastic disk of radius R = 0.314 m is the magnitude of the electric field
equal to 1/6 times the magnitude of the field at the center of the surface of the disk?
Determine the magnitude of the electric field at the surface of a lead-196 nucleus, which contains 82 protons and 114 neutrons. Assume the lead nucleus has a volume 196 times that of one proton and consider a proton to be a sphere of radius 1.20 ✕ 10-15 m.
Two parallel conducting plates, each of cross-sectional area 400 cm2 , are 2.0 cm apart and uncharged. If 1.0 × 1012 electrons are transferred from one plate to the other, what are (a) the charge density on each plate? (b) The electric field between the plates?
Chapter 17 Solutions
College Physics (10th Edition)
Ch. 17 - Bits of paper are attracted to an electrified comb...Ch. 17 - When you walk across a nylon rug and then touch a...Ch. 17 - What similarities does the electric force have to...Ch. 17 - In a common physics demonstration, a rubber rod is...Ch. 17 - A gold leaf electroscope, which is often used in...Ch. 17 - Show how it is possible for neutral objects to...Ch. 17 - Suppose you have a hollow spherical conductor. Is...Ch. 17 - If an electric dipole is placed in a uniform...Ch. 17 - Why do electric field lines point away from...Ch. 17 - A lightning rod is a pointed copper rod mounted on...
Ch. 17 - A rubber balloon has a single point charge in its...Ch. 17 - Explain how the electric force plays an important...Ch. 17 - Just after two identical point charges are...Ch. 17 - If the electric field is E at a distance d from a...Ch. 17 - Two unequal point charges are separated as shown...Ch. 17 - A spherical balloon contains a charge +Q uniformly...Ch. 17 - An electron is moving horizontally in a laboratory...Ch. 17 - Point P in Figure 17.40 is equidistant from two...Ch. 17 - A hollow conductor carries a net charge of +3Q. A...Ch. 17 - Three equal point charges are held in place as...Ch. 17 - An electric field of magnitude E is measured at a...Ch. 17 - A very small ball containing a charge Q hangs from...Ch. 17 - A point charge Q at the center of a sphere of...Ch. 17 - Two charged small spheres are a distance R apart...Ch. 17 - A positively charged glass rod is brought close to...Ch. 17 - A positively charged rubber rod is moved close to...Ch. 17 - Two iron spheres contain excess charge, one...Ch. 17 - Electrical storms. During an electrical storm,...Ch. 17 - In ordinary laboratory circuits, charges in the C...Ch. 17 - BIO Signal propagation in neurons. Neurons are...Ch. 17 - Particles in a gold ring. You have a pure...Ch. 17 - Two equal point charges of +3.00 106 C are placed...Ch. 17 - The repulsive force between two electrons has a...Ch. 17 - A negative charge of 0.550 C exerts an upward...Ch. 17 - Forces in an atom. The particles in the nucleus of...Ch. 17 - (a) What is the total negative charge, in...Ch. 17 - As you walk across a synthetic-fiber rug on a...Ch. 17 - Two small plastic spheres are given positive...Ch. 17 - An astronaut holds two small aluminum spheres,...Ch. 17 - Two small spheres spaced 20.0 cm apart have equal...Ch. 17 - A 1 kg sphere having a charge of +5 C is placed on...Ch. 17 - If a proton and an electron are released when they...Ch. 17 - Three point charges are arranged on a line. Charge...Ch. 17 - If two electrons are each 1.50 x 1010 m from a...Ch. 17 - Two point charges are located on the y axis as...Ch. 17 - Two point charges are placed on the x axis as...Ch. 17 - Three charges are at the corners of an isosceles...Ch. 17 - BIO Base pairing in DNA, I. The two sides of the...Ch. 17 - BIO Base pairing in DNA, II. Refer to the previous...Ch. 17 - Surface tension. Surface tension is the force that...Ch. 17 - Consider the charges in Figure 17.49. Find the...Ch. 17 - Two unequal charges repel each other with a force...Ch. 17 - In an experiment in space, one proton is held...Ch. 17 - A charge +Q is located at the origin and a second...Ch. 17 - A small object carrying a charge of 8.00 nC is...Ch. 17 - (a) What must the charge (sign and magnitude) of a...Ch. 17 - A uniform electric field exists in the region...Ch. 17 - A particle has a charge of 3.00 nC. (a) Find the...Ch. 17 - The electric field caused by a certain point...Ch. 17 - At a distance of 16 m from a charged particle, the...Ch. 17 - Electric fields in the atom. (a) Within the...Ch. 17 - A proton is traveling horizontally to the right at...Ch. 17 - Two point charges are separated by 25.0 cm (see...Ch. 17 - A point charge of 4.00 nC is at the origin, and a...Ch. 17 - In a rectangular coordinate system, a positive...Ch. 17 - Two particles having charges of +0.500 nC and +8...Ch. 17 - Three negative point charges lie along a line as...Ch. 17 - Torque and force on a dipole. An electric dipole...Ch. 17 - (a) An electron is moving east in a uniform...Ch. 17 - A +20 nC point charge is placed at the origin, and...Ch. 17 - For the dipole shown in Figure 17.53, show that...Ch. 17 - Figure 17.54shows some of the electric field lines...Ch. 17 - A proton and an electron are separated as shown in...Ch. 17 - Sketch electric field lines in the vicinity of two...Ch. 17 - Two point charges Q and +q (where q is positive)...Ch. 17 - Two very large parallel sheets of the same size...Ch. 17 - (a) A closed surface encloses a net charge of 2.50...Ch. 17 - Figure 17.58 shows cross sections of five closed...Ch. 17 - A point charge 8.00 nC is at the center of a cube...Ch. 17 - A charged paint is spread in a very thin uniform...Ch. 17 - (a) How many excess electrons must be distributed...Ch. 17 - An electric dipole consists of charges q and q...Ch. 17 - A total charge of magnitude Q is distributed...Ch. 17 - During a violent electrical storm, a car is struck...Ch. 17 - A neutral conductor completely encloses a hole...Ch. 17 - An irregular neutral conductor has a hollow cavity...Ch. 17 - Three point charges are arranged along the x axis....Ch. 17 - An electron is released from rest in a uniform...Ch. 17 - A charge q1 = +5.00 nC is placed at the origin of...Ch. 17 - A charge of 3.00 nC is placed at the origin of an...Ch. 17 - Point charges of 3.00 nC are situated at each of...Ch. 17 - An electron is projected with an initial speed u0...Ch. 17 - A small 12.3 g plastic ball is tied to a very...Ch. 17 - A 5.00 nC point charge is on the x axis at x =...Ch. 17 - A 9.60 C point charge is at the center of a cube...Ch. 17 - Two point charges q1 and q2 are held 4.00 cm...Ch. 17 - An early model of the hydrogen atom viewed it as...Ch. 17 - Consider a bee with the mean electric charge found...Ch. 17 - What is the best explanation for the observation...Ch. 17 - After one bee left a flower with a positive...Ch. 17 - In a follow-up experiment, a charge of +40 pC was...Ch. 17 - Space radiation shielding. One of the hazards...Ch. 17 - What is the magnitude of just outside the surface...Ch. 17 - Space radiation shielding. One of the hazards...Ch. 17 - Which of the following is true about E inside a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Dielectric breakdown of air occurs at fields of 3 MV/m. Find (a) the maximum potential (measured from infinity)...
Essential University Physics: Volume 2 (3rd Edition)
1. When is energy most evident?
Conceptual Physics (12th Edition)
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
Decide whether each statement makes sense or does not make sense. Explain clearly; because not all of these hav...
Life in the Universe (4th Edition)
The effect of magnetic field on the ring.
Physics (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the charge distribution shown in Figure P19.74. (a) Show that the magnitude of the electric field at the center of any face of the cube has a value of 2.18 keq/s2. (b) What is the direction of the electric field at the center of the top face of the cube?arrow_forwardFIGURE P25.41 Problems 51 and 52. Find the surface charge density of a sheet of charge that would produce the same electric field as that of a very large flat slab of uniform charge density = 2.00 C/m3 and thickness 2t = 5.00 cm (Fig. P25.51).arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forward
- A very large, flat slab has uniform volume charge density and thickness 2t. A side view of the cross section is shown in Figure P25.51. a. Find an expression for the magnitude of the electric field inside the slab at a distance x from the center. b. If = 2.00 C/m3 and 2t = 8.00 cm, calculate the magnitude of the electric field at x = 300 FIGURE P25.41 Problems 51 and 52.arrow_forwardTwo infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.73. The sheet on the left has a uniform surface charge density , and the one on the right hits a uniform charge density . Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value .arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forward
- A charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forwardThe surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardA thin, horizontal, 20-cmcm-diameter copper plate is charged to -4.3 nCnC. Assume that the electrons are uniformly distributed on the surface. What is the strength and direction of the electric field 0.1 mmmm above the center of the top surface of the plate? What is the strength and direction of the electric field 0.1 mmmm below the center of the bottom surface of the plate?arrow_forward
- The charge density of a non-uniformly charged sphere of radius 1.0 m is given as: For rs1.0 m; p(r)= 2po(1-2 r/3) For r>1.0 m; p(r)= 0, where r is in meters. What is the value of r in meters for which the electric field is maximum? 0.25 0.50 0.75 1.0 2.0arrow_forwardA thin, horizontal, 19-cm -diameter copper plate is charged to -3.8 nC . Assume that the electrons are uniformly distributed on the surface.What is the strength of the electric field 0.1 mm below the center of the bottom surface of the plate?arrow_forward0.6m diameter conducting sphere contains 50 million electrons.(a) What is the total electric flux leaving the surface of the sphere?(b) What is the charge density of the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY