Conceptual Physics (12th Edition)
12th Edition
ISBN: 9780321909107
Author: Paul G. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 31RCQ
Place a Pyrex funnel mouth-down in a saucepan full of water so that the narrow tube of the funnel protrudes above water. Rest a part if the funnel on a nail or a coin so that water can get under it. Place the pan on a strove and watch the water as it begins to boil. Where do the bubbles form first? Why? As the bubbles rise, they expand rapidly and push water ahead of them. The funnel confines the water, which is forced up the tube and driven out at the top. Now do you know how a geyser and a coffee percolator work?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why do we put the small beaker into the larger beaker and pack it with ice, so that the small beaker is
completely covered with ice?
Once the calorimeter is assembled, we use a distilled water bottle to force the water level in the pipette to
the top? Why do we do this?
The "frog thermometer", while cute, was fairly functional in determining whether or not a patient had a fever.
Inside the glass frog, spheres of a particular density would float in pure water (which has a density of 1.00 g/cm) at a room temperature (20 °C), then if they were
placed on top of a patient with a high fever (38 °C), the fluid's density would change and the spheres would sink to the bottom.
Find the density of the spheres, in g/cm°. Justify your answer using your equations and rationale used.
Note: There is actually a range of possible values for the density of those spheres; you can pick one value in that range or simply mention the range.
Will the buoyant force on an aluminum sphere submergedin water increase, decrease, or remain the same, if thetemperature is increased from 20°C to 40°C? Explain.
Chapter 17 Solutions
Conceptual Physics (12th Edition)
Ch. 17 - Prob. 1RCQCh. 17 - Do the molecules in a liquid all have about the...Ch. 17 - What is evaporation?Ch. 17 - What is evaporation a cooling process?Ch. 17 - What is sublimation?Ch. 17 - Prob. 6RCQCh. 17 - Why is a steam burn more damaging than a burn from...Ch. 17 - Why do you feel uncomfortably warm on a hot and...Ch. 17 - Distinguish between humid and relative humidity.Ch. 17 - Why does water vapor in the air condense when the...
Ch. 17 - Why does warm, moist air from clouds when it...Ch. 17 - What is the basic difference between a cloud and...Ch. 17 - Distinguish between evaporation and boiling.Ch. 17 - Does increased atmospheric pressure increase or...Ch. 17 - Is it the boiling of water or the higher...Ch. 17 - Why doesn’t the water at the bottom of geyser boil...Ch. 17 - What happens to the water pressure at the bottom...Ch. 17 - Why doesn’t energy added to boiling water increase...Ch. 17 - When will water boil at a temperature lower...Ch. 17 - Prob. 20RCQCh. 17 - Why does increasing the temperature of a solid...Ch. 17 - Why does decreasing the temperature of a liquid...Ch. 17 - Why doesn’t water freeze at 00C when foreign ions...Ch. 17 - What happens to the hexagonal open structure of...Ch. 17 - Why doesn’t wire simply cut a block of ice in two...Ch. 17 - Does a liquid release energy or absorb energy when...Ch. 17 - Prob. 27RCQCh. 17 - Does the heat that is discharge at the...Ch. 17 - How many calories are needed to change the...Ch. 17 - Cite two reasons why firewalkers don’t burn their...Ch. 17 - Place a Pyrex funnel mouth-down in a saucepan full...Ch. 17 - Prob. 32RCQCh. 17 - Prob. 33RCQCh. 17 - Prob. 34RCQCh. 17 - Prob. 35RCQCh. 17 - Prob. 36RCQCh. 17 - The quantity of heat with temperature change is...Ch. 17 - Prob. 38RCQCh. 17 - Prob. 39RCQCh. 17 - Consider 50g of hot water at 800C poured into a...Ch. 17 - 50g chunk of 800C iron is dropped into a cavity in...Ch. 17 - Prob. 42RCQCh. 17 - Prob. 43RCQCh. 17 - 44. The heat of vaporization of ethyl alcohol is...Ch. 17 - Rank the boiling water temperatures from highest...Ch. 17 - From greatest to least, rank the energies needed...Ch. 17 - When you step out of a swimming pool on a hot, dry...Ch. 17 - Why is sweating an efficient mechanism for cooling...Ch. 17 - Why does blowing over hot soup cool the soup?Ch. 17 - What happens to the temperature of a pan of water...Ch. 17 - What is the source of energy that keeps the...Ch. 17 - An inventor claims to have developed a new perfume...Ch. 17 - Does a common electric fan cool the air in a room?...Ch. 17 - Prob. 54RCQCh. 17 - Prob. 55RCQCh. 17 - Prob. 56RCQCh. 17 - 57. Why are icebergs often surrounded by fog?
Ch. 17 - Prob. 58RCQCh. 17 - Prob. 59RCQCh. 17 - Prob. 60RCQCh. 17 - Prob. 61RCQCh. 17 - Prob. 62RCQCh. 17 - 63. A great amount of water vapor changes phase to...Ch. 17 - 64. Why does the temperature of boiling water...Ch. 17 - Prob. 65RCQCh. 17 - Prob. 66RCQCh. 17 - Prob. 67RCQCh. 17 - Prob. 68RCQCh. 17 - 69. Water will boil spontaneously in a vacuum—on...Ch. 17 - Prob. 70RCQCh. 17 - Prob. 71RCQCh. 17 - Prob. 72RCQCh. 17 - 73. If water that boils due to reduced pressure in...Ch. 17 - Prob. 74RCQCh. 17 - Prob. 75RCQCh. 17 - Prob. 76RCQCh. 17 - Prob. 77RCQCh. 17 - Prob. 78RCQCh. 17 - Prob. 79RCQCh. 17 - Prob. 80RCQCh. 17 - Prob. 81RCQCh. 17 - Prob. 82RCQCh. 17 - Prob. 83RCQCh. 17 - Prob. 84RCQCh. 17 - Prob. 85RCQCh. 17 - Prob. 86RCQCh. 17 - Prob. 87RCQCh. 17 - Prob. 88RCQCh. 17 - Prob. 89RCQCh. 17 - Prob. 90RCQCh. 17 - 91.Why is half-frozen fruit punch always sweeter...Ch. 17 - Prob. 92RCQCh. 17 - Prob. 93RCQCh. 17 - Prob. 94RCQCh. 17 - Prob. 95RCQCh. 17 - Prob. 96RCQCh. 17 - Prob. 97RCQCh. 17 - Prob. 98RCQCh. 17 - Prob. 99RCQCh. 17 - Prob. 100RCQCh. 17 - Prob. 101RCQCh. 17 - Prob. 102RCQCh. 17 - Prob. 103RCQCh. 17 - Prob. 104RCQCh. 17 - 105. When can you add heat to something without...Ch. 17 - Prob. 106RCQCh. 17 - 107. When can you withdraw heat from something...Ch. 17 - Discuss why water can issue from deep underwater...Ch. 17 - Prob. 109RCQCh. 17 - Prob. 110RCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An airplane is cruising al altitude 10 km. The pressure outside the craft is 0.287 atm; within the passenger compartment, the pressure is 1.00 atm and the temperature is 20C. A small leak occurs in one of the window seals in the passenger compartment. Model the air as an ideal fluid to estimate the speed of the airstream flowing through the leak.arrow_forwardCalculate the gauge pressures inside 2.00-cm-radius bubbles of water, alcohol, and soapy water. Which liquid forms the most stable bubbles, neglecting any effects of evaporation?arrow_forwardAn apple is held completely submerged just below the surface of water in a container. The apple is then moved to a deeper point in the water. Compared with the force needed to hold the apple just below the stir face, what is the force needed to hold it at the deeper point? (a) larger (b) the same (c) smaller (d) impossible to determinearrow_forward
- How do gases differ from liquids?arrow_forwardThe spirit-in-glass thermometer, invented in Florence, Italy, around 1054, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P15.70). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at 20.0C and decreases to 0.780 97 g/cm3 at 30.0C. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium hallway up the tube at 20.0C, determine its mass. (b) When the temperature increases to 30.0C, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0C, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere?arrow_forwardWhat is the atmospheric pressure on top of Mt. Everest on a day when water boils there at a temperature at 70.0C ?arrow_forward
- Considering the magnitude of typical arterial blood pressures, why are mercury rather than water manometers used for these measurements?arrow_forwardConsider the piston cylinder apparatus shown in Figure P20.81. The bottom of the cylinder contains 2.00 kg of water at just under 100.0c. The cylinder has a radius of r = 7.50 cm. The piston of mass m = 3.00 kg sits on the surface of the water. An electric heater in the cylinder base transfers energy into the water at a rate of 100 W. Assume the cylinder is much taller than shown in the figure, so we dont need to be concerned about the piston reaching the top of the cylinder. (a) Once the water begins boiling, how fast is the piston rising? Model the steam as an ideal gas. (b) After the water has completely turned to steam and the heater continues to transfer energy to the steam at the same rate, how fast is the piston rising?arrow_forwardBird bones have air pockets to reduce their weight—this also gives them an average density significantly less than that of the bones of other animals. Suppose an ornithologist weighs a bird bone air and in water and finds its mass is 45.0 g ad its apparent mass when submerged is 3.60 g (assume the bone is watertight.)(a) What mass of is displaced? (b) What is the volume of the bone? (c) What is its average density?arrow_forward
- A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pressure at the bottom of the pool. (b) Two persons with combined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.arrow_forwardA piece of unpainted porous wood barely floats in an open container partly filled with water. The container is then sealed and pressurized above atmospheric pressure. What happens to the wood? (a) It rises in the water. (b) It sinks lower in the water. (c) It remains at the same level.arrow_forwardIt is often possible to loosen the metal lid on a hard-to-open glass jar by running hot water over top of it for a few moments. Why does this happen and what does this tell you about the properties of metal and glass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY