
(a)
Interpretation:
Density of composite is to be calculated.
Concept introduction:
Rules of mixtures is:
Where
Volume fraction is defined as:

Answer to Problem 17.29P
The requiredvalue of volume fraction of composite =
Explanation of Solution
Given information:
Weight of boron fiber in unidirectional orientation =
Weight of aluminum fiber in unidirectional orientation =
Based on given information:
Applying rule of mixing,
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams.
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum.
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Applying rule of mixing
(b)
Interpretation:
Modulus of elasticity parallel to fiber is to be calculated.
Concept introduction:
Modulus of elasticity is defined as the ratio of shear stress to shear strain.
Relation for modulus of elasticity is given as:

Answer to Problem 17.29P
The required value of modulus of elasticity parallel to fibers is
Explanation of Solution
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams:
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum:
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Substituting the following values in the formula of modulus of elasticity:
The required value of modulus of elasticity is 198239.68 MPa.
(c)
Interpretation:
Modulus of elasticity perpendicular to fiber is to be calculated.
Concept introduction:
Modulus of elasticity is defined as the ratio of shear stress to shear strain
Relation for modulus of elasticity perpendicular to fiber is given as:

Answer to Problem 17.29P
The required value of modulus of elasticity perpendicular to fibers is
Explanation of Solution
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams:
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum:
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Substituting the following values in the formula of modulus of elasticity
The required value of modulus of elasticity is 104719.40 MPa.
Want to see more full solutions like this?
Chapter 17 Solutions
Essentials Of Materials Science And Engineering
- Can the expert solve an Integral In detall? ⑥M-1 大 80*10万 1012 es dw 7010 80x10³ ⒸP= 1 Sin (Iwl+1) dw 70x10xarrow_forwardQ1:A) Draw the directional control of DC motor using a relay. Switch controlled by PLC +V Ov (a) Motor OV (b) Motor 10 B) Define the encoder with mention its types. The term encoder is used for a device that provides a digital output as a result of angular or linear displacement. incremental encoder 2 6 absolute encoder 2 10 Q2: A) Suppose that PLC connected to three pushbutton switches as shown in this illustration: 4 2000000 0000 000000 0000 Draw a Ladder Diagram program for PLC to turn the lamp ON when the switch statuses be: Switch A = pressed, Switch B = pressed, Switch C = pressed 1:0 I:0 I:0 0:0 H/HH/H 2 Managemenarrow_forwardFor an reinforced concrete two-way slab shown in figure under the load (P). (the slab continuous over all edges - all sides are fixed), Solve by using equilibrium method A- Draw the Yield line Pattern B- Determine the moment m C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200 kN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars. (Pmin = 0.002) 2 m 6 m -8 m 3 marrow_forward
- Find the solution of the following Differential Equations 1) 4y+y=0, y(0)=2, y'(0) = 0. 2) y+y=0, y(0) = A, y'(0) = B. 3) "+2y'-8y=0, y(0)=1, y'(0)=8. 4) y"-2y-3y=0, y(0)=1, y'(0)=7. 5) y"-ky' =0, y(0)=2, y'(0) =k. 6) y+ky'-2k2y=0, y(0)=2, y'(0) = 2k. 7) y'+4y=0, y(0)=2.8 y+y-17sin(21) y(0)=-1. 9) y-y'-6y=0, y(0)=6. y'(0)=13. 10) y-y=0, 11) y"-4y+4y=0, y(0)=4, y'(0) = 0. y(0) = 2.1, y'(0)=3.9 12) y+2y+2y=0, y(0)=1, y'(0)=-3. 13) "+7y+12y=21e", y(0)=3.5, y'(0)=-10. 14) "+9y=10e", y(0)=0. y'(0) = 0. 15) y+3y+2.25y=91³ +64. y(0)=1, y'(0) = 31.5 16) "-6y+5y= 29 cos(21), y(0)=3.2, y'(0) = 6.2 17) y+2y+2y=0, y(0)=0, y'(0)=1. 18) y+2y+17y=0, y(0)=0, y'(0)=12. 19) y-4y+5y=0, y(0)-1, y'(0) 2. 20) 9y-6y+y=0. y(0)=3, y'(0)=1. 21) -2y+10y=0, y(0)=3, y'(0)=3. 22) 4y-4y+37y=0, (0) 3. y(0) 1.5 23) 4y-8y+5y=0, (0)-0, y(0) 1. 24) y+y+1.25y=0, y(0) 1. y'(0) -0.5 25) y+y=2 cos(1). y(0) 2. y'(0) = 0. 26) -4y+3y=0, (0)-3, y'(0) = 7. 27) y+2y+y=e", y(0)-0. y'(0) = 0. 29) 28) y+2y-3y-10sinh(2),…arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forwardA double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fe = 40 MPa, y = 25 kN/m³. = 1200 mm >09 *100* As = 400 +100+ As = 400 400 1400+arrow_forward
- 4. Block A and B are two different pieces of wood. Determine the minimum dimension for "a", if the shear stress of the wood is 50Mpa. The thickness of the wood is 30cm. 600N Aarrow_forward1. Determine the reaction force at A. 60 kN 5 B 1 m 1 m- -1 m 4 3 m 30 kN marrow_forwardA double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fc = 40 MPa, y = 25 kN/m³. = 1200 mm >09< *100* As = 400 +100+ As = 400 400 1400+arrow_forward
- Find the Laplace Transform of the following functions 1) f() cos(ar) Ans. F(s)=7 2ws 2) f() sin(at) Ans. F(s)= s² + a² 3) f(r)-rcosh(at) Ans. F(s)= 2as 4)(t)=sin(at) Ans. F(s)= 2 5) f(1) = 2te' Ans. F(s)= (S-1) 5+2 6) (1) e cos() Ans. F(s) = (+2)+1 7) (1) (Acostẞr)+ Bsin(Br)) Ans. F(s)- A(s+a)+BB (s+a)+B 8) f()-(-)() Ans. F(s)= 9)(1)(1) Ans. F(s): 10) f(r),()sin() Ans. F(s): 11) 2 k 12) 0 13) 0 70 ㄷ.. a 2a 3a 4a 2 3 4 14) f(1)=1, 0<1<2 15) (1) Ksin(t) 0arrow_forward2. Determine the average normal stress developed in rod AB. The mass is 50kg and the diameter of the rod AB is 8mm. B 8 mmarrow_forwardA prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center line of the flanges and initially stressed to 850 N/mm². The beam is required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the total prestressing wires area required. Ignore prestressing force losses in your answer. (Ye kN/m³). = 24 2As 400 As 80 80; 750arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





