Concept explainers
(a)
The magnitude and direction of electric field at
(a)
Answer to Problem 66E
The magnitude of electric field at
Explanation of Solution
Given that the charge
Write the expression for the of electric field at a point due to a point charge.
Here,
Conclusion:
Substitute
The magnitude of electric field is,
The direction of electric field is radially outward from a positive charge and radially inward to a negative charge.
Since, the given charge is negative; the electric field will be towards the charge. The direction of electric field is towards negative
Therefore, the magnitude of electric field between the plates is
(b)
The magnitude and direction of electric field at
(b)
Answer to Problem 66E
The magnitude of electric field at
Explanation of Solution
Given that the charge
Write the expression for the electric field at a point due to a point charge.
Here,
Conclusion:
Substitute
The magnitude of electric field is,
The direction of electric field is radially outward from a positive charge and radially inward to a negative charge.
Since, the given charge is negative; the electric field will be towards the charge. The direction of electric field is towards positive
Therefore, the magnitude of electric field at
(c)
The magnitude and direction of electric field at
(c)
Answer to Problem 66E
The magnitude of electric field at
Explanation of Solution
Draw the figure for charge and the point.
From the figure, use Pythagoras theorem to calculate the distance of the point from the origin
Write the expression for the distance of the point from the charge,
Here,
Substitute
Given that the charge
Write the expression for the electric field at a point due to a point charge.
Here,
Conclusion:
Substitute
The magnitude of electric field is,
The direction of electric field is radially outward from a positive charge and radially inward to a negative charge.
Since, the given charge is negative; the electric field will be towards the charge from the point.
Therefore, the magnitude of electric field at
Want to see more full solutions like this?
Chapter 16 Solutions
General Physics, 2nd Edition
- Consider the charge distribution shown in Active Figure 19.31. (i) What are the charges contributing to the total electric flux through surface S? (a) q1 only (b) q4 only (c) q2 and q3 (d) all four charges (e) none of the charges (ii) What are the charges contributing to the total electric field at a chosen point on the surface S? (a) q1 only (b) q4 only (c) q2 and q3 (d) all four charges (e) none of the charges Active Figure 19.31 The net electric flux through any closed surface depends only on the charge inside that surface. The net flux through surface S is ql/0, the net flux through surface S is (q2 + q3)/0, and the net flux through surface S is zero.arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardConsider a thin, spherical shell of radius 14.0 cm with a total charge of 32.0 C distributed uniformly on its surface. Find the electric field (a) 10.0 cm and (b) 20.0 cm from the center of the charge distribution.arrow_forward
- A point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forwardaA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardTwo solid spheres, both of radius 5 cm. carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume, (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB= 0 (b) EA EB 0 (c) EA = EB 0 (d) 0EAEB (e) 0 = Ea EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? choose from the same possibilities as in part (i).arrow_forward
- Two particles with charges q1 and q2 are separated by a distance d, and each exerts an electric force on the other with magnitude FE. a. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be halved? b. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be doubled?arrow_forward(a) Find the electric field at the center of the triangular configuration of charges in Figure 18-54., given that qa=+ 2.50 nC, qb=-8.00 nC, and qc=+ 1.50 nC. (b) Is there any combination of charges, other than qa= qb=qc,that will produce a zero strength electric field at the center of the triangular configuration?arrow_forwardA uniform electric field of 1.00 N/C is set up by a uniform distribution of charge in the xy plane. What is the electric field inside a metal ball placed 0.500 m above the xy plane? (a) 1.00 N/C (b) -1.00 N/C (c) 0 (d) 0.250 N/C (e) varies depending on the position inside the ballarrow_forward
- A uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P 19.21. The rod has a total charge of 7.50 C. Find (a) the magnitude and (b) the direction of the electric field at O, the center of the semicircle.arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning