Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 60P
To determine
To Find:
Linear density of the string
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a wave on a string moving to the right, as shown
in Fig. 11-50. What is the direction of the velocity of a
particle of string at point B?
Wave velocity
(a)
A
B
(b)
(c)
▼
FIGURE 11-50
(d).
MisConceptual Question 12.
(e) v = 0, so no direction.
A string can have a “free" end if that end is attached to a
ring that can slide without friction on a vertical pole
(Fig. 11-60). Determine the wavelengths of the resonant
vibrations of such a string with one end fixed and the other
free.
Free
end
Fixed
end
FIGURE 11-60
Problem 82.
Cousin Throckmorton holds one end of the clothesline taut and wiggles it up and down sinusoidally with frequency 2.00 Hz and amplitude 0.075 m. The wave speed on the clothesline is v = 12.0 m/s. At t = 0 Throcky’s end has maximum positive displacement and is instantaneously at rest. Assume that no wave bounces back from the far end. (a) Find the wave amplitude A, angular frequency v, period T, wavelength l, and wave number k. (b) Write a wave function describing the wave. (c) Write equations for the displacement, as a function of time, of Throcky’s end of the clothesline and of a point 3.00 m from that end.
Chapter 16 Solutions
Fundamentals of Physics Extended
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - The amplitudes and phase differences for four...Ch. 16 - Prob. 7QCh. 16 - a If a standing wave on a siring is given by y't =...Ch. 16 - Prob. 9QCh. 16 - If you set up the seventh harmonic on a string, a...
Ch. 16 - Prob. 11QCh. 16 - If a wave yx, t = 6.0mm sinkx 600 rad/st ...Ch. 16 - Prob. 2PCh. 16 - A wave has an angular frequency of 110 rad/s and a...Ch. 16 - Prob. 4PCh. 16 - A sinusoidal wave travels along a string. The time...Ch. 16 - Prob. 6PCh. 16 - A transverse sinusoidal wave is moving along a...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 11PCh. 16 - GO The function yx, t = 15.0 cm cosx 15 t, with x...Ch. 16 - Prob. 13PCh. 16 - The equation of a transverse wave on a string is y...Ch. 16 - Prob. 15PCh. 16 - The speed of a transverse wave on a string is 170...Ch. 16 - The linear density of a string is 1.6 104 kg/m. A...Ch. 16 - Prob. 18PCh. 16 - SSM What is the speed of a transverse wave in a...Ch. 16 - The tension in a wire clamped at both ends is...Ch. 16 - ILW A 100 g wire is held under a tension of 250 N...Ch. 16 - A sinusoidal wave is traveling on a string with...Ch. 16 - SSM ILW A sinusoidal transverse wave is traveling...Ch. 16 - Prob. 24PCh. 16 - A uniform rope of mass m and length L hangs from a...Ch. 16 - A string along which waves can travel is 2.70 m...Ch. 16 - Prob. 27PCh. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Prob. 31PCh. 16 - What phase difference between two identical...Ch. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - SSM Two sinusoidal waves of the same frequency...Ch. 16 - Four waves are to be sent along the same string,...Ch. 16 - GO These two waves travel along the same string:...Ch. 16 - Two sinusoidal waves of the same frequency are to...Ch. 16 - Two sinusoidal waves of the same period, with...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - SSM WWW What are a the lowest frequency, b the...Ch. 16 - A 125 cm length of string has mass 2.00 g and...Ch. 16 - Prob. 45PCh. 16 - String A is stretched between two clamps separated...Ch. 16 - Prob. 47PCh. 16 - If a transmission line in a cold climate collects...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A rope, under a tension of 200 N and fixed at both...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - GO The following two waves are sent in opposite...Ch. 16 - A standing wave pattern on a string is described...Ch. 16 - A generator at one end of a very long string...Ch. 16 - GO In Fig. 16-42, a string, tied to a sinusoidal...Ch. 16 - GO In Fig. 16-43, an aluminum wire, of length L1 =...Ch. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - A wave has a speed of 240 m/s and a wavelength of...Ch. 16 - The equation of a transverse wave traveling alone...Ch. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - A transverse sinusoidal wave is generated at one...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - a What is the fastest transverse wave that can be...Ch. 16 - A standing wave results from the sum of two...Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - When played in a certain manner, the lowest...Ch. 16 - A sinusoidal transverse wave traveling in the...Ch. 16 - Two sinusoidal waves of the same wavelength travel...Ch. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - a Write an equation describing a sinusoidal...Ch. 16 - A wave on a string is described by yx, t = 15.0...Ch. 16 - Prob. 88PCh. 16 - Two waves are described by...Ch. 16 - Prob. 90PCh. 16 - SSM In a demonstration, a 1.2 kg horizontal rope...Ch. 16 - Prob. 92PCh. 16 - A traveling wave on a string is described by...Ch. 16 - Prob. 94PCh. 16 - Prob. 95PCh. 16 - Consider a loop in the standing wave created by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A variable length air column (closed on one end) is placed just below a vibrating wireof mass 5.00g, which is fixed at both ends. The length of the air column is graduallyincreased from zero until the first position of resonance (first harmonic) is observed at 34cm. The wire is 120 cm long and is vibrating in its third harmonic. If the speed of soundin air is 340 m/s, what is the tension in the wire?arrow_forwardA standing wave pattern on a string is described by y(x,t) =0.04sin(5πx)cos(40πt), (1) where x and y are in meters and t is inseconds. (a) Determine the locations of all nodes for 0.00 ≦ x ≦0.40m. (b) What is the period of the oscillatory motion of any(nonode) point on the string. (c) What are the speed and theamplitude of the two traveling waves that interfere to produce thiswave? (d) At what times for 0.000 ≦ t ≦ 0.050s will all thepoints on the string have zero transverse velocity?arrow_forwardA string can have a "free" end if that end is attached to a ring that can slide without friction on a vertical pole (Fig. 15-40). Determine the wavelengths of the resonant vibrations of such a string with one end fixed and the other free. o dignelovew lloh bi bhs eoh Free end Fixed end 16 FIGURE 15-40 Problem 85. l-arrow_forward
- A string that is stretched between fixed supports separated by 75.0 cm has resonant frequencies of 420 and 315 Hz, with no intermediate resonant frequencies.What are (a) the lowest resonant frequency and (b) the wave speed?arrow_forwardWhen a sinusoidal wave crosses the boundary between two sections of cord as in Fig. 11–34, the frequency does not change (although the wavelength and velocity do change). Explain whyarrow_forwardA periodic vibration at x = 0, t = 0 displaces air molecules along the x direction by smax = 3.2E-05 m. The motion produces a sound wave that travels at a velocity of v = 336 m/s with a frequency of f = 120 Hz. Take the density of air as ρa = 1.20 kg/m3. Calculate the displacement of the air molecules using an function for the traveling sound wave in terms of time and position at time t = 0.001 s and displacement x = 1.0 m. Write an expression for the maximum pressure exerted by the sound wave ΔPmax in terms of the air density ρa, the sound velocity v, the angular frequency ω, and the maximum displacement smax. The sound wave is directly incident on a sheet of paper of surface area A = 0.013 m2. Calculate the maximum force Fmax, in newtons, exerted on this sheet.arrow_forward
- You double the intensity of a sound wave in air while leaving the frequency unchanged. (The pressure, density, and temperature of the air remain unchanged as well.) What effect does this have on the displacement amplitude, pressure amplitude, bulk modulus, sound speed, and sound intensity level?arrow_forward(a) An experimenter wishes to generate in air a sound wave that has a displacement amplitude of 6.20 10-6 m. The pressure amplitude is to be limited to0.850 Pa. What is the minimum wavelength the sound wave can have? (Take the equilibrium density of air to be ρ = 1.20 kg/m3 and assume the speed of sound in air is v = 343 m/s.) (b) Calculate the pressure amplitude of a 2.80 kHz sound wave in air, assuming that the displacement amplitude is equal to 2.00 ✕ 10-8 m.[Note: Use the following values, as needed. The equilibrium density of air is ρ = 1.20 kg/m3. The speed of sound in air is v = 343 m/s. Pressure variations ΔP are measured relative to atmospheric pressure, 1.013 ✕ 105 Pa.] (c) Earthquakes at fault lines in Earth's crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 9 km/s. Estimate the average bulk modulus of Earth's crust given that the density of rock is about 2500 kg/m3.arrow_forwardA sinusoidal transverse wave of amplitude ym and wavelength l travels on a stretched cord. (a) Find the ratio of the maximum particle speed (the speed with which a single particle in the cord moves transverse to the wave) to the wave speed. (b) Does this ratio depend on the material of which the cord is made?arrow_forward
- A uniform cylindrical steel wire, 55.0 cm long and 1.14 mm in diameter, is fixed at both ends. To what tension must it be adjusted so that, when vibrating in its first overtone, it produces the note D-sharp of frequency 311 Hz? Assume that it stretches an insignificant amount.arrow_forwardA uniform flexible cable of mass 4.00 kg and length 20.0 m hanging vertically on its own weight. Cable is vibrating from upper end with a frequency of 10.0 Hz. Find the speed of transverse wave at its mid-point.arrow_forward(a) An ethernet cable is 4 m long and has a mass of 0.25 kg. A transverse wave pulse is produced by plucking one end of the taut cable. The pulse makes 5 trips down and back along the cable in 0.5 s. What is the tension in the cable? (b) A simple pendulum consists of a ball of mass 3 kg hanging from a uniform string of mass 0.06 kg and length L. If the period of oscillation of the pendulum is 3 s, determine the speed of a transverse wave in the string when the pendulum hangs vertically. Group of answer choices 2) Light waves are electromagnetic waves that travel at 3.00 108 m/s. The eye is most sensitive to light having a wavelength of 5.84 10-7 m. (a) Find the frequency of this light wave. (b)Find its period.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning