Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 48P
How many overtones are present within the audible range for a 2.48-m-long organ pipe at 20°C (a) if it is open, and (b) if it is closed?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:51
Students have asked these similar questions
What is the first overtone frequency (the next frequency above the fundamental) for an organ pipe 2.00 m in length, closed at one end? Speed of sound in air is 340 m/s.
Organ pipes can be designed as open or closed tubes. What is the frequency of the fundamental and the next two harmonics for a 26-cm-long organ pipe at 20°C if it is (a) open and (b) closed? The speed of soundat this temperature is ≈ 340 m/s.
An organ pipe that is open both ends has a fundamental frequency of 382 Hz at 0 ° C. Calculate the
fundamental frequency for this pipe at 35 ° C.
Chapter 16 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 16.1 - Prob. 1AECh. 16.3 - If an increase of 3 dB means twice as intense,...Ch. 16.3 - Trumpet players. A trumpeter plays at a sound...Ch. 16.4 - Two strings have the same length and tension, but...Ch. 16.7 - Prob. 1GECh. 16.7 - How fast would a source have to approach an...Ch. 16 - What is the evidence that sound travels as a wave?Ch. 16 - What is the evidence that sound is a form of...Ch. 16 - Children sometimes play with a homemade telephone...Ch. 16 - When a sound wave passes from air into water, do...
Ch. 16 - What evidence can you give that the speed of sound...Ch. 16 - The voice of a person who has inhaled helium...Ch. 16 - What is the main reason the speed of sound in...Ch. 16 - Two tuning forks oscillate with the same...Ch. 16 - How will the air temperature in a room affect the...Ch. 16 - Explain how a lube might be used as a filler to...Ch. 16 - Prob. 11QCh. 16 - A noisy truck approaches you from behind a...Ch. 16 - Standing waves can he said to be due to...Ch. 16 - In Fig. 16-15, if the frequency of the speakers is...Ch. 16 - Traditional methods of protecting the hearing of...Ch. 16 - Consider the two waves shown in Fig. 1630. Each...Ch. 16 - Is there a Doppler shift if the source and...Ch. 16 - If a wind is blowing, will this alter the...Ch. 16 - Figure 1631 shows various positions of a child on...Ch. 16 - Approximately how many octaves are there in the...Ch. 16 - At a race track, you can estimate the speed of...Ch. 16 - (I) A hiker determines the length of a lake by...Ch. 16 - Prob. 2PCh. 16 - (I) (a) Calculate the wavelengths in air at 20C...Ch. 16 - (I) On a warm summer day (27C), it takes 4.70 s...Ch. 16 - (II) A motion sensor can accurately measure the...Ch. 16 - Prob. 6PCh. 16 - A stone is dropped from the top of a cliff. The...Ch. 16 - A person, with his ear to the ground, sees a huge...Ch. 16 - Prob. 9PCh. 16 - (I) The pressure amplitude of a sound wave in air...Ch. 16 - (I) What must be the pressure amplitude in a sound...Ch. 16 - (II) Write an expression that describes the...Ch. 16 - (II) The pressure variation in a sound wave is...Ch. 16 - What is the intensity of a sound at the pain level...Ch. 16 - (I) What is the sound level of a sound whose...Ch. 16 - (I) What are the lowest and highest frequencies...Ch. 16 - (II) Your auditory system can accommodate a huge...Ch. 16 - (II) You are trying to decide between two new...Ch. 16 - (II) At a painfully loud concert, a 120-dB sound...Ch. 16 - (II) If two firecrackers produce a sound level of...Ch. 16 - A person standing a certain distance from an...Ch. 16 - (II) A cassette player is said to have a...Ch. 16 - (II) (a) Estimate the power output of sound from a...Ch. 16 - (II) A 50-dB sound wave strikes an eardrum whose...Ch. 16 - Expensive amplifier A is rated at 250 W, while the...Ch. 16 - (II) At a rock concert, a dB meter registered...Ch. 16 - A fireworks shell explodes 100m above the ground,...Ch. 16 - If the amplitude of a sound wave is made 2.5 times...Ch. 16 - Two sound waves have equal displacement...Ch. 16 - What would be the sound level (in dB) of a sound...Ch. 16 - (a) Calculate the maximum displacement of air...Ch. 16 - A jet plane emits 5.0 105 J of sound energy per...Ch. 16 - What would you estimate for the length of a bass...Ch. 16 - The A string on a violin has a fundamental...Ch. 16 - An organ pipe is 124 cm long. Determine the...Ch. 16 - (a) What resonant frequency would you expect from,...Ch. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - An unfingered guitar string is 0.73m long and is...Ch. 16 - (II) (a) Determine the length of an open organ...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - (II) A particular organ pipe can resonate at 264...Ch. 16 - A uniform narrow tube 1.80m long is open at both...Ch. 16 - (II) A pipe in air at 23.0C is to be designed to...Ch. 16 - How many overtones are present within the audible...Ch. 16 - Prob. 49PCh. 16 - (II) In a quartz oscillator, used as a stable...Ch. 16 - The human car canal is approximately 2.5 cm long....Ch. 16 - (II) Approximately what are the intensities of the...Ch. 16 - A piano tuner hears one beat every 2.0s when...Ch. 16 - What is the beat frequency if middle C (262 Hz)...Ch. 16 - A guitar string produces 4 beats/s when sounded...Ch. 16 - (II) The two sources of sound in Fig. 1615 face...Ch. 16 - Prob. 57PCh. 16 - (II) Two loudspeakers are placed 3.00 m apart, as...Ch. 16 - Two piano strings are supposed to be vibrating at...Ch. 16 - A source emits sound of wavelengths 2.64 m and...Ch. 16 - (I)The predominant frequency of a certain fire...Ch. 16 - A bat at rest sends out ultrasonic sound waves at...Ch. 16 - (II) (a) Compare the shift in frequency if a...Ch. 16 - Two automobiles are equipped with the same single...Ch. 16 - A police car sounding a siren with a frequency of...Ch. 16 - (II) A bat flies toward a wall at a speed of 7.0...Ch. 16 - In one of the original Doppler experiments, a tuba...Ch. 16 - (II) If a speaker mounted on an automobile...Ch. 16 - A wave on the surface of the ocean with wavelength...Ch. 16 - A factory whistle emits sound of frequency 720 Hz....Ch. 16 - The Doppler effect using ultrasonic waves of...Ch. 16 - (II) An airplane travels at Mach 2.0 where the...Ch. 16 - A space probe enters the thin atmosphere of a...Ch. 16 - A meteorite traveling 8800 m/s strikes the ocean....Ch. 16 - Show that the angle a sonic boom makes with the...Ch. 16 - Prob. 76PCh. 16 - (II) A supersonic jet traveling at Mach 2.2 at an...Ch. 16 - A fish finder uses a sonar device that sends...Ch. 16 - A science museum has a display called a sewer pipe...Ch. 16 - A single mosquito 5.0 m from a person makes a...Ch. 16 - What is the resultant sound level when an 82-dB...Ch. 16 - The sound level 9.00 m from a loudspeaker, placed...Ch. 16 - A stereo amplifier is rated at 175 W output at...Ch. 16 - Workers around jet aircraft typically wear...Ch. 16 - In audio and communications systems, the gain, ,...Ch. 16 - For large concerts, loudspeakers are sometimes...Ch. 16 - Manufacturers typically offer a particular guitar...Ch. 16 - The high-E string on a guitar is fixed at both...Ch. 16 - Prob. 89GPCh. 16 - Prob. 90GPCh. 16 - Two identical tubes, each closed at one end, have...Ch. 16 - Prob. 92GPCh. 16 - The diameter D of a tube does affect the node at...Ch. 16 - A person hears a pure tone in the 500 to 1000-Hz...Ch. 16 - The frequency of a steam train whistle as it...Ch. 16 - Two trains emit 516-Hz whistles. One train is...Ch. 16 - Two loudspeakers are at opposite ends of a...Ch. 16 - Two open organ pipes, sounding together, produce a...Ch. 16 - A bat flies toward a moth at speed 7.5 m/s while...Ch. 16 - If the velocity of blood flow in the aorta is...Ch. 16 - A bat emits a series of high-frequency sound...Ch. 16 - Prob. 102GPCh. 16 - Two loudspeakers face each other at opposite ends...Ch. 16 - Prob. 104GPCh. 16 - The wake of a speedboat is 15 in a lake where the...Ch. 16 - Prob. 106GPCh. 16 - Prob. 107GPCh. 16 - Prob. 108GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
The Cosmic Perspective Fundamentals (2nd Edition)
Your university radio station has a 5.0-kW radio transmitter that broadcasts uniformly in all directions; liste...
Essential University Physics: Volume 2 (3rd Edition)
Rooms A and B are the same size, and are connected by an open door. Room A, however, is warmer (perhaps because...
An Introduction to Thermal Physics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
In order from largest to smallest, the energies (UC)1 to (UC)4 stored in each capacitors.
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Some studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardThe area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardIf the aluminum rod in Example 18.6 were free at both ends, what audible frequencies would be heard? Compare your results with the results of Example 18.6 and explain the difference.arrow_forward
- A barrel organ is shown in Figure P18.38. Such organs are much smaller than traditional organs, allowing them to fit in smaller spaces and even allowing them to be portable. Use the photo to estimate the range in fundamental frequencies produced by the organ pipes in such an instrument. Assume the pipes are open at both ends. How does that range compare to a piano whose strings range in fundamental frequency from 21.7 Hz to 4186.0 Hz? FIGURE P18.38arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardAn 8hour exposure to a sound intensity level of 90.0 dB may cause hearing damage. What energy in joules falls on a 0.800cmdiameter eardrum so exposed?arrow_forward
- An 8-hour exposure to a sound intensity level of 90.0 dB may cause hearing damage. What energy in joules falls on a 0.800-cm-diameter eardrum so exposed?arrow_forwardIf a sound intensity level of 0 dB at 1000 Hz corresponds to a maximum gauge pressure (sound amplitude) of 109 atm, what is the maximum gauge pressure in a 60dB sound? What is the maximum gauge pressure in a 120dB sound?arrow_forward(a) Find the length of an organ pipe closed at one end that produces a fundamental frequency of 256 Hz when air temperature is 18.0°C. (b) What is its fundamental frequency at 25.0°C?arrow_forward
- A nylon guitar string is fixed between two lab posts 2.00 m apart. The string has a linear mass density of =7.20 g/m and is placed under a tension of 160.00 N. The string is placed next to a tube, open at both ends, of length L. The string is plucked and the tube resonates at the n=3 mode. The speed of sound is 343 m/s. What is the length of the tube?arrow_forwardIf a wind instrument, such as a tuba, has a fundamental frequency of 32.0 Hz, what are its first three overtones? It is closed at one end. (The overtones of a real tuba are more complex than this example, because it is a tapered tube.)arrow_forwardWhat frequency is received by a mouse just before being dispatched by a hawk flying at it at 25.0 m/s and emitting a screech of frequency 3500 Hz? Take the Speed of sound to be 331 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY