
Big Java Late Objects
2nd Edition
ISBN: 9781119330455
Author: Horstmann
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 3PE
Program Plan Intro
Faulty version of a method “hasNext()”
Program plan:
- In a file “ListIterator.java”, create an interface “ListIterator”,
- Declare the method “next()” that moves the iterator past the next element.
- Declare the method “hasNext()” that check if there is an element after the iterator position.
- Declare the method “add()” that adds an element before the position of the iterator and moves the iterator past the added element.
- Declare the method “remove()” that removes the last traversed element.
- Declare the method “set()” to set the last traversed element to a previous value.
- In a file “BadLinkedList.java”, import the package and create a class “BadLinkedList”,
- Declare the object variable.
- Define the constructor to create an empty linked list.
- Define the method “reverse()” that reverses the elements in the linked list.
- Define the method “getFirst()” that returns the first element in the linked list.
- Define the method “removeFirst()” to remove the first element in the linked list.
- Define the method “addFirst()” that adds an element to the front of the linked list,
- Create new node.
- Assign new node to the first position.
- Assign the value to the new node.
- Assign the first element to the next.
- Define the method “listIterator()” of type “ListIterator”, that returns an iterator for iterating through the list.
- Create a class “Node”,
- Declare the object variable for “Object”, and “Node”.
- Create a class “LinkedListIterator”,
- Declare the necessary object variables.
- Define the constructor to create an iterator that points to the front of the linked list.
- Define the method “next()”,
- If there is no next element then throws an exception.
- Assign the position to the front of the linked list.
- Check if position is null, set the first element to the position.
- Otherwise, set the next position to the current position.
- Returns the value.
- Define the method “hasNext()” that checks whether there is next element.
- Returns true, if the position is not null.
- Define the method “add()”,
- If position is null, call the method “addFirst()”.
- Set the first to the position.
- Otherwise, create a new node.
- Assign the element to the new node.
- Set the next position to the next pointer of the new node.
- Set the new node value to the next position.
- Set the new node as the position.
- Set the position to the previous value.
- If position is null, call the method “addFirst()”.
- Define the method “remove()”,
- Check if position is same as previous,
- If it is true, throws an exception.
- If position is same as the first, calls the method “removeFirst()”.
- Otherwise, set the next position to the previous position.
- Set the previous to the positions.
- Assign previous to the position.
- If it is true, throws an exception.
- Check if position is same as previous,
- Define the method “set()”,
- If position is null, throws an exception.
- Set the value to the position.
- In a file “LinkedList.java”, import the package and create a class “LinkedList”,
- Declare the object variable.
- Define the constructor to create an empty linked list.
- Define the method “reverse()” that reverses the linked list elements.
- Define the method “getFirst()” that returns the first element in the linked list.
- Define the method “removeFirst()” to remove the first element in the linked list.
- Define the method “addFirst()” that adds an element to the front of the linked list,
- Create a new node.
- Assign the value to the new node.
- Assign the first element to the next pointer of new node.
- Assign new node to the first position.
- Define the method “listIterator()” of type “ListIterator”, that returns an iterator for iterating through the list.
- Create a class “Node”,
- Declare the object variable for “Object”, and “Node”.
- Create a class “LinkedListIterator”,
- Declare the necessary object variables.
- Define the constructor to create an iterator that points to the front of the linked list.
- Define the method “next()”,
- If there is no next element then throws an exception.
- Assign the position to the front of the linked list.
- Check if position is null, set the first element to the position.
- Otherwise, set the next position to the current position.
- Returns the value.
- Define the method “hasNext()” that check whether there is next element,
- Check if position is null,
- Returns true if first reference is not null.
- Otherwise,
- Returns true, if the next reference of the position is not null.
- Check if position is null,
- Define the method “add()”,
- If position is null, call the method “addFirst()”.
- Set the first to the position.
- Otherwise, create a new node.
- Assign the element to the new node.
- Set the next position to the next pointer of the new node.
- Set the new node value to the next position.
- Set the new node as the position.
- Set the Boolean value as false.
- If position is null, call the method “addFirst()”.
- Define the method “remove()”,
- Check if there is no next element, throws an exception.
- If position is same as the first, calls the method “removeFirst()”.
- Otherwise, set the next position to the previous position.
- Set the previous to the positions.
- St the Boolean value to false.
- Define the method “set()”,
- If there is no next element, throw an exception.
- Set the value to the position.
- In a file ListTest.java”, create a class “ListTest”,
- Define the “main()” method.
- Create the “LinkedList” object.
- Call the method “addFirst()” to add “Tommy” to the front of the linked list.
- Call the method “addFirst()” to add “Juliet” to the font of the linked list.
- Call the method “addFirst()” to add “Harris” to the font of the linked list.
- Call the method “addFirst()” to add “David” to the font of the linked list.
- Assign the value returned from the method “listIterator()” calling by LinkedList object.
- Print the actual and expected result.
- Create “BadLinkedList” object.
- Call the method “addFirst()” to add “Tommy” to the front of the linked list.
- Call the method “addFirst()” to add “Juliet” to the font of the linked list.
- Call the method “addFirst()” to add “Harris” to the font of the linked list.
- Call the method “addFirst()” to add “David” to the font of the linked list.
- Assign the value returned from the method “listIterator()” calling by Bad linked list object.
- Print the actual and expected result.
- Define the “main()” method.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help to solve the following case, thank you
hi I would like to get help to resolve the following case
Could you help me to know features of the following concepts:
- defragmenting.
- dynamic disk.
- hardware RAID
Chapter 16 Solutions
Big Java Late Objects
Ch. 16.1 - Prob. 1SCCh. 16.1 - Prob. 2SCCh. 16.1 - Prob. 3SCCh. 16.1 - Prob. 4SCCh. 16.1 - Prob. 5SCCh. 16.1 - Prob. 6SCCh. 16.1 - Prob. 7SCCh. 16.2 - Prob. 8SCCh. 16.2 - Prob. 9SCCh. 16.2 - Prob. 10SC
Ch. 16.2 - Prob. 11SCCh. 16.2 - Prob. 12SCCh. 16.3 - Prob. 13SCCh. 16.3 - Prob. 14SCCh. 16.3 - Prob. 15SCCh. 16.3 - Prob. 16SCCh. 16.3 - Prob. 17SCCh. 16.3 - Prob. 18SCCh. 16.4 - Prob. 19SCCh. 16.4 - Prob. 20SCCh. 16.4 - Prob. 21SCCh. 16.4 - Prob. 22SCCh. 16.4 - Prob. 23SCCh. 16.4 - Prob. 24SCCh. 16 - Prob. 1RECh. 16 - Prob. 2RECh. 16 - Prob. 3RECh. 16 - Prob. 4RECh. 16 - Prob. 5RECh. 16 - Prob. 6RECh. 16 - Prob. 7RECh. 16 - Prob. 8RECh. 16 - Prob. 9RECh. 16 - Prob. 10RECh. 16 - Prob. 11RECh. 16 - Prob. 12RECh. 16 - Prob. 13RECh. 16 - Prob. 14RECh. 16 - Prob. 15RECh. 16 - Prob. 16RECh. 16 - Prob. 17RECh. 16 - Prob. 18RECh. 16 - Prob. 19RECh. 16 - Prob. 20RECh. 16 - Prob. 21RECh. 16 - Prob. 22RECh. 16 - Prob. 23RECh. 16 - Prob. 24RECh. 16 - Prob. 25RECh. 16 - Prob. 26RECh. 16 - Prob. 1PECh. 16 - Prob. 2PECh. 16 - Prob. 3PECh. 16 - Prob. 4PECh. 16 - Prob. 5PECh. 16 - Prob. 6PECh. 16 - Prob. 7PECh. 16 - Prob. 8PECh. 16 - Prob. 9PECh. 16 - Prob. 10PECh. 16 - Prob. 11PECh. 16 - Prob. 12PECh. 16 - Prob. 13PECh. 16 - Prob. 14PECh. 16 - Prob. 15PECh. 16 - Prob. 16PECh. 16 - Prob. 17PECh. 16 - Prob. 18PECh. 16 - Prob. 19PECh. 16 - Prob. 20PECh. 16 - Prob. 21PECh. 16 - Prob. 1PPCh. 16 - Prob. 2PPCh. 16 - Prob. 3PPCh. 16 - Prob. 4PPCh. 16 - Prob. 5PPCh. 16 - Prob. 6PPCh. 16 - Prob. 7PPCh. 16 - Prob. 8PPCh. 16 - Prob. 9PPCh. 16 - Prob. 10PPCh. 16 - Prob. 11PPCh. 16 - Prob. 12PPCh. 16 - Prob. 13PPCh. 16 - Prob. 14PPCh. 16 - Prob. 15PPCh. 16 - Prob. 16PPCh. 16 - Prob. 17PP
Knowledge Booster
Similar questions
- what is a feature in the Windows Server Security Compliance Toolkit, thank you.arrow_forwardYou will write a program that allows the user to keep track of college locations and details about each location. To begin you will create a College python class that keeps track of the csollege's unique id number, name, address, phone number, maximum students, and average tuition cost. Once you have built the College class, you will write a program that stores College objects in a dictionary while using the College's unique id number as the key. The program should display a menu in this order that lets the user: 1) Add a new College 2) Look up a College 4) Delete an existing College 5) Change an existing College's name, address, phone number, maximum guests, and average tuition cost. 6) Exit the programarrow_forwardShow all the workarrow_forward
- Show all the workarrow_forward[5 marks] Give a recursive definition for the language anb2n where n = 1, 2, 3, ... over the alphabet Ó={a, b}. 2) [12 marks] Consider the following languages over the alphabet ={a ,b}, (i) The language of all words that begin and end an a (ii) The language where every a in a word is immediately followed by at least one b. (a) Express each as a Regular Expression (b) Draw an FA for each language (c) For Language (i), draw a TG using at most 3 states (d) For Language (ii), construct a CFG.arrow_forwardQuestion 1 Generate a random sample of standard lognormal data (rlnorm()) for sample size n = 100. Construct histogram estimates of density for this sample using Sturges’ Rule, Scott’s Normal Reference Rule, and the FD Rule. Question 2 Construct a frequency polygon density estimate for the sample in Question 1, using bin width determined by Sturges’ Rule.arrow_forward
- Generate a random sample of standard lognormal data (rlnorm()) for sample size n = 100. Construct histogram estimates of density for this sample using Sturges’ Rule, Scott’s Normal Reference Rule, and the FD Rule.arrow_forwardCan I get help with this case please, thank youarrow_forwardI need help to solve the following, thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education

Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON

Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education