University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 32CQ
When a television news anchor in a studio speaks to a reporter in a distant country, there is sometimes a noticeable lag between when the anchor speaks in the studio and when the remote reporter hears it and replies. Explain what causes this delay.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
la) To enable the broadcast of the ongoing impeachment trial of America president, a
transmission engineer had to mix the televise TV Signal with a carrier signal of f(t) =
Cosωot. As a communication expert, give and explain four technical reasons why this
process should be carried out
1b) If the acceptable hearing level of worshiper in a church service is pegged
at 40 x 10-2wm-1. a loud speaker is to be install at 500cm from the pulpit, determine the
minimum power level of the loud speaker that must be install
1c) list and briefly explain the three types of modulation scheme and show their
respective waveform
Question 18 (2
People used to check if train was coming by putting their ear on the railway. Why do they use this method? What is
the difference between just listening from air and the rail?
Paragraph V
B
I
V
+ v
Lato (Recom... v
19px... ✓
LO
D
D
Mt.
In echolocation, a RADAR used infrared to determine the distance of a far away object. Estimate this range if the sender has received the reflected signal after 5.0 µs.
Chapter 16 Solutions
University Physics Volume 2
Ch. 16 - Check Your Understanding When the emf across a...Ch. 16 - Check Your Understanding Could a purely electric...Ch. 16 - Check Your Understanding The wave equation was...Ch. 16 - Check Your Understanding What conclusions did our...Ch. 16 - Check Your Understanding How would the speed and...Ch. 16 - Check Your Understanding How do the...Ch. 16 - Explain how the displacement current maintains the...Ch. 16 - Describe the field lines of the induced magnetic...Ch. 16 - Why is it much easier to demonstrate in a student...Ch. 16 - If the electric field of an electromagnetic wave...
Ch. 16 - In which situation shown below will the...Ch. 16 - In which situation shown below will the...Ch. 16 - Under what conditions might wires in a circuit...Ch. 16 - Shown below is the interference pattern of two...Ch. 16 - When you stand outdoors in the sunlight, y can you...Ch. 16 - How does the intensity of an electromagnetic wave...Ch. 16 - What is the physical significance of the Poynting...Ch. 16 - A 2.0-mW helium-neon laser transmits a continuous...Ch. 16 - Why is t1 radiation pressure of an electromagnetic...Ch. 16 - Why did the early Hubble Telescope photos of...Ch. 16 - (a) If the electric field and magnetic field in a...Ch. 16 - Compare the speed, wavelength, and frequency of...Ch. 16 - Accelerating electric charge emits electromagnetic...Ch. 16 - Compare and contrast the meaning of the prefix...Ch. 16 - Part of the light passing through the air is...Ch. 16 - When a bowl of soup is removed from a microwave...Ch. 16 - Certain orientations of a broadcast television...Ch. 16 - What property of light corresponds to loudness in...Ch. 16 - Is the visible region a major portion of the...Ch. 16 - Can the human body detect electromagnetic...Ch. 16 - Radio waves normally have their E and B fields in...Ch. 16 - Give an example of resonance in the reception of...Ch. 16 - Illustrate that the size of details of an object...Ch. 16 - In which pan of the electromagnetic spectrum are...Ch. 16 - In what range of electromagnetic radiation are the...Ch. 16 - If a microwave oven could be modified to merely...Ch. 16 - A leaky microwave oven in a home can sometimes...Ch. 16 - When a television news anchor in a studio speaks...Ch. 16 - Show that the magnetic field at a distance r from...Ch. 16 - Express the displacement current in a capacitor in...Ch. 16 - A potential difference V(t) = V0sin tis maintained...Ch. 16 - Suppose the parallel-plate capacitor shown below...Ch. 16 - The potential difference V(t) between parallel...Ch. 16 - A parallel-plate capacitor has a plate area of...Ch. 16 - The voltage across a parallel-plate capacitor with...Ch. 16 - The voltage across a parallel-plate capacitor with...Ch. 16 - If the Sun suddenly turned off, we would not know...Ch. 16 - What is the maximum electric field strength in an...Ch. 16 - An electromagnetic wave has a frequency of 12 MHz....Ch. 16 - If electric and magnetic field strengths vary...Ch. 16 - The electric field of an electromagnetic wave...Ch. 16 - A plane electromagnetic wave of frequency 20 GHz...Ch. 16 - The following represents an electromagnetic wave...Ch. 16 - While outdoors on a sunny day, a student holds a...Ch. 16 - A plane electromagnetic wave travels northward. At...Ch. 16 - The electric field of an electromagnetic wave is...Ch. 16 - A radio station broadcasts at a frequency of 760...Ch. 16 - The filament in a clear incandescent light bulb...Ch. 16 - At what distance does a 100-W lightbulb produce...Ch. 16 - An incandescent light bulb emits only 2.6 W of its...Ch. 16 - A 150-W lightbulb emits 5% of its energy as...Ch. 16 - A small helium-neon laser has a power output of...Ch. 16 - At the top of Earth’s atmosphere, the...Ch. 16 - The magnetic field of a plane electromagnetic wave...Ch. 16 - What is the intensity of an electromagnetic wave...Ch. 16 - Assume the helium-neon lasers commonly used in...Ch. 16 - An AM radio transmitter broadcasts 50.0 kW of...Ch. 16 - Suppose the maximum safe intensity of microwaves...Ch. 16 - A 2.50-rn-diameter university communications...Ch. 16 - Lasers can be constructed that produce an...Ch. 16 - A 1-W lightbulb emits 5% of its energy as...Ch. 16 - What pressure does light emitted uniformly in all...Ch. 16 - A microscopic spherical dust particle of radius 2m...Ch. 16 - A Styrofoam spherical ball of radius 2 mm and mass...Ch. 16 - Suppose that S avg for sunlight at a point on the...Ch. 16 - reaches the ground with an intensity of about...Ch. 16 - Suppose a spherical particle of mass m and radius...Ch. 16 - How many helium atoms, each with a radius of about...Ch. 16 - If you wish to detect details of the size of atoms...Ch. 16 - Find the frequency range of visible light, given...Ch. 16 - (a) Calculate the wavelength range for AM radio...Ch. 16 - Radio station WWVB, operated by the National...Ch. 16 - An outdoor WIFi unit for a picnic area has a...Ch. 16 - The prefix “mega” (M) and “kilo” (k), when...Ch. 16 - A computer user finds that his wireless router...Ch. 16 - (a) The ideal size (most efficient) for a...Ch. 16 - What are the wavelengths of (a) X-rays of...Ch. 16 - For red light of =660nm , what are f,, and k?Ch. 16 - A radio transmitter broadcasts plane...Ch. 16 - (a) Two microwave frequencies authorized for use...Ch. 16 - During normal beating, the heart creates a maximum...Ch. 16 - Distances in space are often quoted in units of...Ch. 16 - A certain 60.0-Hz ac power line radiates an...Ch. 16 - (a) What is the frequency of the 193-nm...Ch. 16 - In a region of space, the electric field is...Ch. 16 - A microwave oven uses electromagnetic waves of...Ch. 16 - Galileo proposed measuring the speed of light by...Ch. 16 - Show that the wave equation in one dimension...Ch. 16 - On its highest power setting, a microwave oven...Ch. 16 - A certain microwave oven projects 1.00 kW of...Ch. 16 - E1ecmagnedc radiation from a 5.00-mW laser is...Ch. 16 - A 200-turn flat coil of wire 30.0 cm in diameter...Ch. 16 - Suppose a source of electromagnetic waves radiates...Ch. 16 - A radio station broadcasts its radio waves with a...Ch. 16 - The Poynting vector describes a flow of energy...Ch. 16 - The Sun’s energy strikes Earth at an intensity of...Ch. 16 - If a Lightsail spacecraft were sent on a Mars...Ch. 16 - Lunar astronauts placed a reflector on the Moon’s...Ch. 16 - Radar is used to determine distances to various...Ch. 16 - Calculate the ratio of the highest to lowest...Ch. 16 - How does the wavelength of radio waves for an AM...Ch. 16 - A parallel-plate capacitor with plate separation d...Ch. 16 - A particle of cosmic dust has a density =2.0g/cm3...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A comet plunges into the planet Jupiter. At the instant this happens, your physics class on Earth begins; in ot...
Essential University Physics: Volume 2 (3rd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assumi...
University Physics Volume 1
11. The foot of a 55 kg sprinter is on the ground for 0.25 s while her body accelerates from rest to 2.0 m/s.
a...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A vertical tube 1.0 cm in diameter and open at the top contains 5.0 g of oil (density 0.82 g/cm3) floating on 5...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Submarine A travels horizontally at 11.0 m/s through ocean water. It emits a sonar signal of frequency f = 5.27 103 Hz in the forward direction. Submarine B is in front of submarine A and traveling at 3.00 m/s relative to the water in the same direction as submarine A. A crewman in submarine B uses his equipment to detect the sound waves (pings) from submarine A. We wish to determine what is heard by the crewman in submarine B. (a) An observer on which submarine detects a frequency f as described by Equation 16.46? (b) In Equation 16.46, should the sign of vs be positive or negative? (c) In Equation 16.46, should the sign of vo be positive or negative? (d) In Equation 16.46, what speed of sound should be used? (e) Find the frequency of the sound detected by the crewman on submarine B.arrow_forward(a) Find the size of the smallest detail observable in human tissue with 20.0-MHz ultrasound. (b) Is its effective penetration depth great enough to examine the entire eye (about 3.00 cm is needed)? (c) What is the wavelength of such ultrasound in 0°C air?arrow_forwardA Doppler weather radar station broadcasts a pulse of radio waves at frequency 2.85 GHz. From a relatively small batch of raindrops at bearing 38.6 east of north, the station receives a reflected pulse after 180 s with a frequency shifted upward by 254 Hz. From a similar batch of raindrops at bearing 39.6 east of north, the station receives a reflected pulse after the same time delay, with a frequency shifted downward by 254 Hz. These pulses have the highest and lowest frequencies the station receives, (a) Calculate the radial velocity components of both batches of raindrops. (b) Assume that these raindrops are swirling in a uniformly rotating vortex. Find the angular speed of their rotation.arrow_forward
- Radio station WWVB, operated by the National Institute of Standards and Technology (NIST) from Fort Collins, Colorado, at a low frequency of 60 kHz, broadcasts a time synchronization signal whose range covers the entire continental US. The timing of the synchronization signal is controlled by a set of atomic clocks to an accuracy of 101012 s, and repeats every 1 minute. The signal is used for devices, such as radio-controlled watches, that automatically synchronize with it at preset local times. WWVB's long wavelength signal tends to propagate close to the ground. (a) Calculate the wavelength of the radio waves from WWVB. (b) Estimate the error that the travel time of the signal causes in synchronizing a radio controlled watch in Norfolk, Virginia, which is 1570 mi (2527 km) from Fort Collins, Colorado.arrow_forwardMy organic synthesis microwave oven uses a wavelength of 11.0cm. I want to know what frequency region may be noisy because of this, so what frequency (in Hz) is the microwave oven using?arrow_forwardAn oceanic depth-sounding ship surveys the ocean bottom near the Mariana Trench, the deepest known location under the ocean. They use ultrasonic sound that travels at 1430 m/s in sea water. They find a 15.4 s delay of the echo to the ocean floor and back. What is the depth? (Image credit: https://www.scientificamerican.com/article/the-mariana-trench-is-7-miles-deep-whats-down- there/) Show Your Workarrow_forward
- An oceanic depth-sounding vessel sends a sonar of 0.100MHz towards the ocean floor. a) If sound travels at 1520m/s in seawater, what is the wavelength of this signal? b) If the return signal is received 6 seconds later, how deep is the ocean floor?arrow_forwardultrasound physics For a breast examination, the sonographer replaces a 5 MHz transducer with a 10 MHz transducer. Which transducer frequency produces the stronger echo from a reflector at a depth of 5 cm? Assume that the transmitted intensity is the same for each frequency.arrow_forwardCurrent Attempt in Progress (a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 x 108 m. Find the time it took for his voice to reach the earth via radio waves. (b) Someday a person will walk on Mars, which is 5.60 × 1010 m from the earth at the point of closest approach. Determine the minimum time that will be required for a message from Mars to reach the earth via radio waves. (a) Number i Units (b) Number i Unitsarrow_forward
- 65. Light composed of multiple frequencies passes through crown glass. (a) How much faster does the orange component of light with a wavelength of 610 nm travel in the crown glass than the component of violet light with a wavelength of 410 nm? orange light is faster than violet light by: = ✗ m/sarrow_forward1.Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. 1) How far away is the planet Venus if the round-trip echo time is 1000 s? |2) What is the echo time for a car 75 m from a Police radar unit?arrow_forwardEstimate the phase shift between the below two sinusoidal signals in degrees 10 as 00 05 10 0000 0.005 0010 0015 0.020 Time (sec) Select one: O 0.018 O TT 58 O 1.0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning