Bundle: Foundations of Astronomy, Enhanced, 13th + LMS Integrated MindTap Astronomy, 2 terms (12 months) Printed Access Card
Bundle: Foundations of Astronomy, Enhanced, 13th + LMS Integrated MindTap Astronomy, 2 terms (12 months) Printed Access Card
13th Edition
ISBN: 9781337368360
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 1RQ
To determine

Whether E0 galaxy appears to have a “Milky Way” band of star light for someone on a planet in the same galaxy.

Expert Solution & Answer
Check Mark

Answer to Problem 1RQ

No. E0 galaxy does not appear to have a “Milky Way” band of star light.

Explanation of Solution

Milky Way galaxy is almost disk shaped. Thus, when seen from within it appears like a band of star light.

The two-dimensional representation of E0 galaxies seems almost circular but their actual shape inferred from the radial motion of the galaxies is likely to be spherical, true, flattened or elongated.

Because of the spherical nature of the E0 galaxy, when someone habituated on an exoplanet in that galaxy looks at it, they will see stars scattered all over the sky rather than a band of stars.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose that stars were born at random times over the last 10e10 years. The rate ofstar formation is simply the number of stars divided by 10e10 years. The fraction ofstars with detected extrasolar planets is at least 9 %. The rate of star formation can bemultiplied by this fraction to find the rate planet formation. How often (in years) doesa planetary system form in our galaxy? Assume the Milky Way contains 7 × 10e11 stars. I've done this problem 3 different times from scratch and looked at similar problems here. Each time my answer is 1.587 (1.59 rounded to 2 significant figures), but when I submit, it says the answer is wrong. What do you think?
Suppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 11 %. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 3 × 1011 stars.
In a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices   No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it.   Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals.   Yes, because we have already found radio signals from another civilization living near a star in a globular cluster.   No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop.   Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY