Organic Chemistry
Organic Chemistry
2nd Edition
ISBN: 9781118452288
Author: David R. Klein
Publisher: WILEY
Question
Book Icon
Chapter 1.6, Problem 17PTS

(a)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 1. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 2. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 3. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

To find: Get the total number of electrons for the given atom (a)

Carbon is placed in IVA group of the periodic table. Its atomic number is 6.  Therefore, carbon has six electrons in its shells.

(b)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 4. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 5. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 6. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

To find: Get the total number of electrons for the given atom (b)

(c)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 7. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 8. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 9. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

(d)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 10. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 11. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 12. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

To find: Get the total number of electrons for the given atom (d)

Fluorine is placed in VIIA group of the periodic table. Its atomic number is 9.  Therefore, fluorine has nine electrons in its shells.

(e)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 13. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 14. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 15. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

To find: Get the total number of electrons for the given atom (e)

(f)

Interpretation Introduction

Interpretation: The electronic configuration for the given atoms should be identified

Concept Introduction: An orbital is a region of space in which electrons are filled.  It can hold up to two electrons.

An atomic orbital is the region of space in which the probability of finding the electrons is highest.  It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

The orders in which orbitals are filled by the electrons are governed by three basic principles.

  1. 16. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
  2. 17. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
  3. 18. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.

The electron configuration is the distribution of electrons of an atom in atomic orbitals.  By following these three principles, electronic configuration of a particular atom is written.

To find: Get the total number of electrons for the given atom (f)

Blurred answer

Chapter 1 Solutions

Organic Chemistry

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY