(a)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 1. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 2. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 3. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
To find: Get the total number of electrons for the given atom (a)
Carbon is placed in IVA group of the periodic table. Its
(b)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 4. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 5. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 6. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
To find: Get the total number of electrons for the given atom (b)
(c)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 7. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 8. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 9. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
(d)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 10. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 11. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 12. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
To find: Get the total number of electrons for the given atom (d)
Fluorine is placed in VIIA group of the periodic table. Its atomic number is 9. Therefore, fluorine has nine electrons in its shells.
(e)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 13. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 14. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 15. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
To find: Get the total number of electrons for the given atom (e)
(f)
Interpretation: The electronic configuration for the given atoms should be identified
Concept Introduction: An orbital is a region of space in which electrons are filled. It can hold up to two electrons.
An atomic orbital is the region of space in which the probability of finding the electrons is highest. It is subdivided into 4 orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
The orders in which orbitals are filled by the electrons are governed by three basic principles.
- 16. Aufbau principle: In the ground state of an atom, an electron enters the orbital with lowest energy first and subsequent electrons are fed in the order of increasing energies. The word 'aufbau' in German means 'building up'. Here, it refers to the filling up of orbitals with electrons.
- 17. Pauli exclusion principle: As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.
- 18. Hund’s rule: Every orbital in a subshell is singly occupied with one electron before any one orbital is paired and all electrons in singly occupied orbitals have the same spin.
The electron configuration is the distribution of electrons of an atom in atomic orbitals. By following these three principles, electronic configuration of a particular atom is written.
To find: Get the total number of electrons for the given atom (f)
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Organic Chemistry
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY