Introductory Chemistry: An Active Learning Approach
Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN: 9781305079250
Author: Mark S. Cracolice, Ed Peters
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 119E

A student dissolves 27 .2 g of aniline, C 6 H 5 NH 2 , in 1 .20 × 10 2 g of water. At what temperatures will the solution freeze and boil?

Chapter 16, Problem 119E, A student dissolves 27.2g of aniline, C6H5NH2, in 1.20102g of water. At what temperatures will the

Aniline is used in the polyurethane manufacturing process.

Materials made from polyurethane include foams (as pictured), spandex, hardwood floor coatings, dolly wheels, and many other end products.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The freezing and boiling temperature of solution on dissolving aniline in water is to be stated.

Concept introduction:

Freezing temperature of any liquid is the temperature at which vapor pressure of solid becomes equal to the vapor pressure of liquid. Addition of a solute into any other solution decreases the freezing point of solution. Boiling point is the temperature at which vapor pressure of liquid is equal to atmospheric pressure.

Answer to Problem 119E

Freezing temperature when aniline is dissolved in 1.20×102g of water is 4.52°C.

Boiling temperature of solution when aniline is dissolved in 1.20×102g of water is 101.3°C.

Explanation of Solution

The equation used to calculate freezing temperature of the solution is stated below.

ΔTf=m×Kf…(1)

ΔTf=(T1T2)…(2)

Where,

ΔTf is the depression in freezing point.

T1 is the initial freezing point in °C.

T2 is the final freezing point in °C.

m is the molality of the solution.

Kf is the molal freezing point depression constant in °Ckg /mol.

The formula used to calculate the molality is stated below.

m=Mass of aniline(w in g)×1000Molar mass of aniline(g/mol)×mass of water (in g)…(3)

The given value of mass of aniline is 27.2 g.

The molar mass of aniline is 93.13g/mol.

The given mass of water is 1.20×102g.

Substitute the value of mass of aniline, mass of water and molar mass of aniline in equation (3) as shown below.

m=Mass of aniline(w in g)×1000Molar mass of aniline(g/mol)×Mass of water (in g)=27.2g×100093.13(g/mol)×1.2×100g=2.43 m

Calculation of freezing temperature is shown below.

The given value of Kf is 1.86°C/m.

Substitute the value of m and Kf in equation (1) as shown below.

ΔTf=m×Kf=2.43m×1.86°C/m=4.52°C

Given value of T1 is 0°C.

Substitute the value of ΔTf and T1 in equation (2) as shown below.

ΔTf=(T1T2)4.52°C=(0T2)°C

Therefore, the T2 is calculated as shown below.

T2=(04.52)°C=4.52°C

Therefore, freezing temperature of the solution is 4.52°C.

The equation used to calculate boiling temperature of the solution is stated below.

ΔTb=m×Kb…(4)

ΔTb=(T2T1)…(5)

Where,

ΔTb is the elevation in boiling point.

T1 is the initial boiling point in °C.

T2 is the final boiling point in °C.

m is the molality of the solution.

Kb is the molal boiling point elevation constant in °Ckg /mol.

Calculation of boiling temperature is shown below.

The given value of Kb is 0.52°C/m.

Calculated value of m is 2.43 m.

Substitute the value of m and Kb in equation (4) as shown below.

ΔTb=m×Kb=2.43m×0.52°C/m=1.3°C

Given value of T1 is 100°C.

Substitute the value of ΔTb and T1 in equation (5) as shown below.

ΔTb=(T2T1)1.3°C=(T2100)°C

Therefore, the T2 is calculated as shown below.

T2=(100+1.3)°CT2=101.3°C

Therefore, boiling temperature of the solution is 101.3°C.

Conclusion

Freezing and boiling temperature of the solution is 4.52°C and 101.3°C respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

Introductory Chemistry: An Active Learning Approach

Ch. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - What does it mean to say that a solute particle is...Ch. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Describe the changes that occur between the time...Ch. 16 - Prob. 20ECh. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Which of the following solutes do you expect to be...Ch. 16 - Prob. 29ECh. 16 - Prob. 30ECh. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - Prob. 35ECh. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - A student weighs out a 4.80-g sample of aluminum...Ch. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Potassium hydroxide is used in making liquid soap....Ch. 16 - You need to make an aqueous solution of 0.123M...Ch. 16 - What volume of concentrated sulfuric acid, which...Ch. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - Despite its intense purple color, potassium...Ch. 16 - Prob. 52ECh. 16 - 53. The density of 3.30M potassium nitrate is...Ch. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - Prob. 59ECh. 16 - Prob. 60ECh. 16 - Prob. 61ECh. 16 - Prob. 62ECh. 16 - Prob. 63ECh. 16 - Prob. 64ECh. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - Prob. 67ECh. 16 - Prob. 68ECh. 16 - What are the equivalent mass of Cu(OH)2 and...Ch. 16 - Prob. 70ECh. 16 - Prob. 71ECh. 16 - Prob. 72ECh. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - Prob. 77ECh. 16 - Prob. 78ECh. 16 - Prob. 79ECh. 16 - Prob. 80ECh. 16 - Prob. 81ECh. 16 - Prob. 82ECh. 16 - What is the molarity of the acetic acid solution...Ch. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - Prob. 86ECh. 16 - Prob. 87ECh. 16 - Prob. 88ECh. 16 - Prob. 89ECh. 16 - Prob. 90ECh. 16 - Prob. 91ECh. 16 - Prob. 92ECh. 16 - Calculate the mass of calcium phosphate that will...Ch. 16 - How many milliliters of 0.464M nitric acid...Ch. 16 - Prob. 95ECh. 16 - Prob. 96ECh. 16 - What volume of 0.842M sodium hydroxide solution...Ch. 16 - Prob. 98ECh. 16 - The equation for a reaction by which a solution of...Ch. 16 - Potassium hydrogen phthalate is a solid,...Ch. 16 - Prob. 101ECh. 16 - Oxalic acid dihydrate is a solid, diprotic acid...Ch. 16 - A student finds that 37.80mL of a 0.4052MNaHCO3...Ch. 16 - Prob. 104ECh. 16 - Prob. 105ECh. 16 - Prob. 106ECh. 16 - Prob. 107ECh. 16 - Prob. 108ECh. 16 - Prob. 109ECh. 16 - Prob. 110ECh. 16 - Prob. 111ECh. 16 - Prob. 112ECh. 16 - Prob. 113ECh. 16 - Prob. 114ECh. 16 - Prob. 115ECh. 16 - Prob. 116ECh. 16 - Prob. 117ECh. 16 - The specific gravity of a solution of KCl is...Ch. 16 - A student dissolves 27.2g of aniline, C6H5NH2, in...Ch. 16 - Prob. 120ECh. 16 - Prob. 121ECh. 16 - Prob. 122ECh. 16 - Prob. 123ECh. 16 - Prob. 124ECh. 16 - Prob. 125ECh. 16 - Prob. 126ECh. 16 - When 12.4g of an unknown solute is dissolved in...Ch. 16 - Prob. 128ECh. 16 - Prob. 129ECh. 16 - When 19.77g of glucose, C6H12O6(180.2g/mol), is...Ch. 16 - Prob. 131ECh. 16 - Prob. 132ECh. 16 - When you heat water on a stove, small bubbles...Ch. 16 - Antifreeze is put into the water in an automobile...Ch. 16 - Prob. 135ECh. 16 - Prob. 136ECh. 16 - Prob. 137ECh. 16 - Prob. 138ECh. 16 - Prob. 139ECh. 16 - Prob. 140ECh. 16 - The density of 18.0%HCl is 1.09g/mL. Calculate its...Ch. 16 - Prob. 142ECh. 16 - Prob. 143ECh. 16 - Prob. 144ECh. 16 - Prob. 145ECh. 16 - A student adds 25.0mL of 0.350M sodium hydroxide...Ch. 16 - Prob. 147ECh. 16 - An analytical procedure for finding the chloride...Ch. 16 - Prob. 149ECh. 16 - Prob. 150ECh. 16 - Prob. 151ECh. 16 - A chemist combines 60.0mL of 0.322M potassium...Ch. 16 - A solution is defined as a homogeneous mixture. Is...Ch. 16 - Prob. 154ECh. 16 - Prob. 16.1TCCh. 16 - 0.100gof A is dissolved in 1.00 103mL of water,...Ch. 16 - Prob. 16.3TCCh. 16 - If you are given the structural formulas of two...Ch. 16 - Prob. 1CLECh. 16 - Prob. 2CLECh. 16 - Write a brief description of the relationships...Ch. 16 - Prob. 4CLECh. 16 - Prob. 5CLECh. 16 - Write a brief description of the relationships...Ch. 16 - Prob. 1PECh. 16 - What mass of sodium chloride and what volume of...Ch. 16 - Prob. 3PECh. 16 - Prob. 4PECh. 16 - Prob. 5PECh. 16 - Prob. 6PECh. 16 - Prob. 7PECh. 16 - Determine the number of equivalents of acid and...Ch. 16 - Prob. 9PECh. 16 - Prob. 10PECh. 16 - Prob. 11PECh. 16 - Prob. 12PECh. 16 - Prob. 13PECh. 16 - Prob. 14PECh. 16 - Prob. 15PECh. 16 - Prob. 16PECh. 16 - What volume of 0.105M lithium nitrate must be...Ch. 16 - Prob. 18PECh. 16 - Prob. 19PECh. 16 - Prob. 20PECh. 16 - Prob. 21PECh. 16 - Prob. 22PECh. 16 - The freezing point of cyclohexane is 6.50C, and...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY