Concept explainers
A student dissolves
Aniline is used in the polyurethane manufacturing process.
Materials made from polyurethane include foams (as pictured), spandex, hardwood floor coatings, dolly wheels, and many other end products.
Interpretation:
The freezing and boiling temperature of solution on dissolving aniline in water is to be stated.
Concept introduction:
Freezing temperature of any liquid is the temperature at which vapor pressure of solid becomes equal to the vapor pressure of liquid. Addition of a solute into any other solution decreases the freezing point of solution. Boiling point is the temperature at which vapor pressure of liquid is equal to atmospheric pressure.
Answer to Problem 119E
Freezing temperature when aniline is dissolved in
Boiling temperature of solution when aniline is dissolved in
Explanation of Solution
The equation used to calculate freezing temperature of the solution is stated below.
Where,
•
•
•
•
•
The formula used to calculate the molality is stated below.
The given value of mass of aniline is
The molar mass of aniline is
The given mass of water is
Substitute the value of mass of aniline, mass of water and molar mass of aniline in equation (3) as shown below.
Calculation of freezing temperature is shown below.
The given value of
Substitute the value of
Given value of
Substitute the value of
Therefore, the
Therefore, freezing temperature of the solution is
The equation used to calculate boiling temperature of the solution is stated below.
Where,
•
•
•
•
•
Calculation of boiling temperature is shown below.
The given value of
Calculated value of
Substitute the value of
Given value of
Substitute the value of
Therefore, the
Therefore, boiling temperature of the solution is
Freezing and boiling temperature of the solution is
Want to see more full solutions like this?
Chapter 16 Solutions
Introductory Chemistry: An Active Learning Approach
- In a mountainous location, the boiling point of pure water is found to be 95C. How many grams of sodium chloride must be added to 1 kg of water to bring the boiling point back to 100C? Assume that i = 2.arrow_forwardThe solubility of lead nitrate at 100C is 140.0 g/100 g water. A solution at 100C consists of 57.0 g of lead nitrate in 64.0 g of water. When the solution is cooled 10C to 25.0 g of lead nitrate crystallize out. What is the solubility of lead nitrate in g/100 g water at 10C?arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forward
- Two samples of sodium chloride solutions are brought to a boil on a stove. One of the solutions boils at 100.10C and the other at 100.15C. a Which of the solutions is more concentrated? b Which of the solutions would have a lower freezing point? c If you split the solution that boils at 100.1C into two portions, how would the boiling points of the samples compare? Which of the following statements do you agree with regarding the determination of your answer for part c? I. The question cannot be answered with certainty without knowing the volumes of each portion. II. Making the necessary assumption that the two samples have equal volumes, I was able to correctly answer the question. III. The volumes that the sample was split into are irrelevant when determining the correct answer.arrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is Br2 more soluble in water or in carbon tetrachloride? (b) Is CaCl2 more soluble in water or in benzene (C6H6)? (c) Is chloroform (CHCl3) more soluble in water or in diethyl ether [(C2H5)2O]? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in water or in benzene (C6H6)?arrow_forwardConsider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?arrow_forward
- Predict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is NaCl more soluble in water or in carbon tetrachloride? (b) Is I2 more soluble in water or in toluene (C6H5CH3)? (c) Is ethanol (C2H5OH) more soluble in hexane or in water? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in ethanol or in benzene (C6H6)?arrow_forwardIce Cream A rock salt (NaCl), ice, and water mixture isused to cool milk and cream to make homemade icecream. How many grams of rock salt must be added towater to lower the freezing point by 10.0°C?arrow_forwardHow much N2 can dissolve in water at 25 C if the N2 partial pressure is 585 mm Hg?arrow_forward
- Heat is released when some solutions form; heat is absorbed when other solutions form. Provide a molecular explanation for the difference between these two types of spontaneous processes.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardCalcium chloride, CaCl2, has been used to melt ice from roadways. Given that the saturated solution is 32% CaCl2 by mass, estimate the freezing point.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning