Concept explainers
15.133 and 15.134 Knowing that at the instant shown bar AB has an angular velocity of 10 rad/s and an angular acceleration of 4 rad/s2, both clockwise, determine the angular acceleration of (a) bar BD, (b) bar DE by using the
Fig. P15.131 and P15.133
(a)
Find the magnitude of angular acceleration of bar BD.
Answer to Problem 15.133P
The angular acceleration of the bar BD is
Explanation of Solution
Given information:
The angular velocity of the bar AB is
Consider the bar AB.
Consider the position of the point B with respect to the point A is denoted by
Calculate the velocity at B using the relation:
Substitute
Consider the bar BD.
Consider the position of the point D with respect to the point B is
Consider the angular acceleration of the bar BD is
Calculate the velocity of the point D using the relation:
Substitute
Consider the bar DE.
Consider the position of the point D with respect to the point E is
Consider the angular acceleration of the bar DE is
Calculate the velocity of the point D using the relation:
Substitute
Equate the Equation (1) and (2).
Equate j component of the Equation (3).
Equate i component of the Equation (3).
Substitute
Consider the bar AB.
The angular velocity of the bar AB is
The angular velocity of the bar BD is
The angular velocity of the bar DE is
The angular acceleration of the bar AB is
The angular acceleration of the bar BD is
The angular acceleration of the bar DE is
Consider the bar AB.
Calculate the acceleration
Substitute
Consider the bar BD.
Calculate the acceleration of the point D using the relation:
Substitute
Consider the bar DE.
Consider the angular acceleration of the bar DE is
Calculate the acceleration of the point D using the relation:
Substitute
Equate Equation (4) and (5)
Equate i component of the Equation (6).
Equate j component of the Equation (6).
Substitute
Thus, the angular acceleration of the bar BD is
(b)
Find the magnitude of angular acceleration of bar DE.
Answer to Problem 15.133P
The magnitude of the angular acceleration of bar DE is
Explanation of Solution
Given information:
Calculation:
Refer Part (a).
The angular acceleration of the bar DE is
Thus, The magnitude of the angular acceleration of bar DE is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Additional Engineering Textbook Solutions
Web Development and Design Foundations with HTML5 (8th Edition)
Electric Circuits. (11th Edition)
Thermodynamics: An Engineering Approach
Modern Database Management
Starting Out with C++ from Control Structures to Objects (9th Edition)
Mechanics of Materials (10th Edition)
- For the beam show below, draw A.F.D, S.F.D, B.M.D 6 kN/m 1 M B. 3 M Marrow_forward1. Two long rods of the same diameter-one made of brass (k=85w/m.k) and the other made of copper (k=375 w/m.k) have one of their ends inserted into a furnace (as shown in the following figure). Both rods are exposed to the same environment. At a distance of 105 mm from the furnace, the temperature of the brass rod is 120°C. At what distance from the furnace will the same temperature be reached in the copper rod? Furnace 105 mm T₁ Brass rod ⑪ h Too- x2- Ti Copper rodarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forward
- مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forwardThe composite wall of oven with A= 1m² as in Fig.1 consists of three materials, two of with kA = 20 W/m K and kc = 50 W/m K with thickness, LA=0.3 m, L= 0.15 m and Lc 0.15 m. The inner surface temperature T1=900 K and the outer surface temperature T4 300 K, and an oven air temperature of To=1100 K, h=25 W/m². K. Determine kɛ and the temperatures T2 and T3 also draw the thermal resistance networkarrow_forwardTwo rods (fins) having same dimensions, one made of brass (k = 85 Wm K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature of brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. Ans 22.05arrow_forward
- A long wire (k-8 W/m °C.) with ro 5 mm and surface temperature Ts=180°C as shown in Fig.2. Heat is generated in the wire uniformly at a rate of 5 x107 W/m³. If the energy equation is given by: d 11(77) + - =0 k r dr dr Derive an expression for T(r) and determine the temperature at the center of the wire and at r=2 mm. Air Th T KA LA T2 T3 T Fig.1 KB kc 180°C Го Fig.2arrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forwardCan I solve this problem by calculating the initial kinetic energy with respect to G instead of A.arrow_forward
- B: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 locarrow_forwardShow all work. Indicate the origin that is used for each plane. Identify the Miller indices for the following planes. N 23 1 A) X B) yarrow_forwardthe following table gives weight gain time data for the oxidation of some metal at an elevated temperature W(mg/cm2). Time (min) 4.66 20 11.7 50 41.1 175 a) determin whether the oxidation kinetics obey a linear, parabolic, or logarithmic rate expression. b) Now compute W after a time of 1000 minarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY