Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div(curl F) = 0
Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div(curl F) = 0
Let k be a constant,
F
=
F(
x
,
y
,
z
)
,
G
=
G(
x
,
y
,
z
)
,
and
ϕ
=
ϕ
(
x
,
y
,
z
)
.
Prove the following identities, assuming that all derivatives involved exist and are continuous.
Let r(t) be a vector-valued function such that the magnitude of r(t) does not change over time. Use derivatives to show that the derivative r'(t) is perpendicular to the function r(t) for all times t.
Use the Fundamental Theorem of Calculus to find the derivative of
10
cos t
dt
t8
y =
dy
dx
[NOTE: Enter a function as your answer. Make sure that your syntax is correct, i.e.
remember to put all the necessary (, ), etc. ]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY