Concept explainers
When the heart pumps blood into the aorta, the pressure gradient—the difference between the blood pressure inside the heart and the blood pressure in the artery—is an important diagnostic measurement. A direct measurement of the pressure gradient is difficult, but an indirect determination can be made by inferring the pressure difference from a measurement of velocity. Blood is essentially at rest in the heart; when it leaves and enters the aorta, it speeds up significantly and—according to Bernoulli’s equation—the pressure must decrease. A doctor using 2.5 MHz ultrasound measures a 6000 Hz frequency shift as the ultrasound reflects from blood ejected from the heart.
a. What is the speed of the blood in the aorta?
b. What is the difference in blood pressure between the inside of the heart and the aorta? Assume that the patient is lying down and that there is no difference in height as the blood moves from the heart into the aorta.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Conceptual Integrated Science
Essential University Physics: Volume 1 (3rd Edition)
University Physics (14th Edition)
College Physics
College Physics
Applied Physics (11th Edition)
- How many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardBlood is pumped from the heart at a rate of 5.0 L/min into the aorta (of radius 1.0 cm). Determine the speed of blood through the aorta.arrow_forward
- A rod extending between x = 0 and x = 14.0 cm has uniform cross-sectional area A = 9.00 cm2. Its density increases steadily between its ends from 2.70 g/cm3 to 19.3 g/cm3. (a) Identify the constants B and C required in the expression = B + Cx to describe the variable density. (b) The mass of the rod is given by m=allmaterialdV=allxAdx=014.0cm(B+Cx)(9.00cm2)dx Carry out the integration to find the mass of the rod.arrow_forwardThe heart of a resting adult pumps blood at a rate of 5.00 L/min. (a) Convert this to cm3/s. (b) What is this rate in M3/s?arrow_forwardHow many cubic meters of helium are required to lift a balloon with a 400-kg payload to a height of 8 000 m? Take He = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression air = 0ez/8, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forward
- Figure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forward(a) Convert normal blood pressure readings of 120 over 80 mm Hg to newtons per meter squared using the relationship for pressure due to the weight of a fluid (P=hg) rather than a conversion factor. (b) Discuss why blood pressures for an infant could be smaller than those for an adult. Specifically, consider the smaller height to which blood must be pumped.arrow_forward(a) Convert normal blood pressure readings of 120 over 80 mm Hg to newtons per meter squared using be relationship for pressure due to the weight of a fluid (p=hg) rater a conversion factor. (b) Explain why be blood pressure of an infant would likely be smaller than that of an adult. Specifically, consider the smaller height to which blood mast be pumped.arrow_forward
- A tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forwardThe human circulation system has approximately 1109 capillary vessels. Each vessel has a diameter of about 8 m. Assuming cardiac output is 5 L/min, determine the average velocity of blood flow through each capillary vessel.arrow_forwardA manometer containing water with one end connected to a container of gas has a column height difference of 0.60 m (Fig. P15.72). If the atmospheric pressure on the right column is 1.01 105 Pa, find the absolute pressure of the gas in the container. The density of water is 1.0 103 kg/m3. FIGURE P15.72arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University