Chemistry: The Central Science (13th Edition)
13th Edition
ISBN: 9780321910417
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 54E
- Account for formation of the following series of oxides in terms of the electron configurations of the elements and the discussion of ionic compounds in Section 2.7 GI:
K2O, CaO, Sc2O3, Ti02, V205, CrO3.
Oxide | K20(s) | Ca0(s) | Ti02(s) | V205(s) |
Alff | -363.2 | -635.1 | -938.7 | -1550.6 |
Calculate the enthalpy changes in the following general reaction for each case:
MnOm(s) + H2(g) ->nM(s) + mH2O(g)
(You will need to write the balanced equation for each case and then compute ΔH°. )(d) Based on the data given, estimate a value ofΔHf ° for Sc203(s).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given:
Enthalpy of atomisation of calcium =+ 178 kJ
First ionisation energy of calcium =+590 kJ
Second ionisation energy of calcium = +1145 kJ
Enthalpy of atomisation of chlorine =+ 121 kJ
Electron affinity of chlorine
Lattice energy of calcium chloride =- 2258 kJ
= - 346 kJ
Construct a Born-Haber cycle for calcium chloride, CaCl2 by using the data
given above. Hence, calculate the enthalpy of formation of calcium chloride.
b. The enthalpy of solution for calcium chloride crystal is -81.3 kJ mol'. Based on
the data from the above Born-Haber cycle, calculate the enthalpy change for the
reaction below:
Ca" (g) + 2CI (g)–→ Ca* (aq) + 2CI¯ (aq)
(a) Account for formation of the following series of oxidesin terms of the electron configurations of the elementsand the discussion of ionic compounds in Section 2.7:K2O, CaO, Sc2O3, TiO2, V2O5, CrO3. (b) Name these oxides.(c) Consider the metal oxides whose enthalpies of formation(in kJ mol - 1) are listed here.Oxide K2O1s2 CaO1s2 TiO21s2 V2O51s2ΔHf° -363.2 -635.1 -938.7 -1550.6Calculate the enthalpy changes in the following general reactionfor each case:MnOm1s2 + H21g2¡nM1s2 + mH2O1g2(You will need to write the balanced equation for each caseand then compute ΔH°.) (d) Based on the data given, estimatea value of ΔHf° for Sc2O31s2.
c
Chapter 15 Solutions
Chemistry: The Central Science (13th Edition)
Ch. 15.2 - Molybdenum metal must absorb radiation with a...Ch. 15.2 - Titanium metal requires a photon with a minimum...Ch. 15.2 - Prob. 15.2.1PECh. 15.2 - Classify each of the following statements as...Ch. 15.3 - Prob. 15.3.1PECh. 15.3 -
6 38 Indicate whether energy is emitted or...Ch. 15.3 - Using Equation 6.5. calculate the energy of an...Ch. 15.3 - Prob. 15.4.2PECh. 15.4 - The visible emission lines observed by Balmer all...Ch. 15.4 - Prob. 15.5.2PE
Ch. 15.4 - Prob. 15.6.1PECh. 15.4 - The hydrogen atom can absorb light of wavelength...Ch. 15.5 - Prob. 15.7.1PECh. 15.5 - Prob. 15.7.2PECh. 15.5 - Use the de Brogue relationship to determine the...Ch. 15.5 - Prob. 15.8.2PECh. 15.6 - Neutron diffraction is an important technique for...Ch. 15.6 - The electron microscope has been widely used to...Ch. 15.6 - Prob. 15.10.1PECh. 15.6 - An AM radio station broadcasts at 1010 kHz, and...Ch. 15.6 - One type of sunburn occurs on exposure to UV light...Ch. 15.6 - Prob. 15.11.2PECh. 15.7 - Prob. 15.12.1PECh. 15.7 - A stellar object is emitting radiation at 3.55 mm....Ch. 15 - Prob. 1DECh. 15 - Prob. 1ECh. 15 - Identify the group of elements that corresponds to...Ch. 15 - Prob. 3ECh. 15 - Using the periodic table as a guide, write the...Ch. 15 -
Arrange Be, C, K, and Ca in order of increasing...Ch. 15 - Prob. 6ECh. 15 - Prob. 7ECh. 15 - Prob. 8ECh. 15 - Consider the isoelectronic ions F- and Na+. (a)...Ch. 15 - Prob. 10ECh. 15 - Prob. 11ECh. 15 - Prob. 12ECh. 15 - Give the values for n, I,and mlfor each orbital in...Ch. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - Which of the following represent impossible...Ch. 15 - For the table that follows, write which orbital...Ch. 15 - Sketch the shape and orientation of the following...Ch. 15 - Prob. 19ECh. 15 - Prob. 20ECh. 15 - Two possible electron configurations for an Li...Ch. 15 -
6.70 An experiment called the Stern—Gerlach...Ch. 15 - Prob. 23ECh. 15 - Prob. 24ECh. 15 - What are "valence electrons"? What are "core...Ch. 15 - For each element, indicate the number of valence...Ch. 15 - Write the condensed electron configurations for...Ch. 15 - Write the condensed electron configurations for...Ch. 15 - Identify the specific element that corresponds to...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - Prob. 33ECh. 15 - Prob. 34ECh. 15 - Prob. 35ECh. 15 - Prob. 36ECh. 15 - Prob. 37ECh. 15 - In an experiment to study the photoelectric...Ch. 15 - Prob. 39ECh. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - Prob. 44ECh. 15 - Prob. 45ECh. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - [6.100] The Chemistry and Life box in Section 6.7...Ch. 15 - Prob. 49ECh. 15 - [6.104] In the experiment shown schematically...Ch. 15 - Microwave ovens use microwave radiation to heat...Ch. 15 - Prob. 52ECh. 15 - The discovery of hafnium, element number 72,...Ch. 15 - Account for formation of the following series of...Ch. 15 - Prob. 55ECh. 15 - The two most common isotopes of uranium are 235U...Ch. 15 - Hypothetical elements X and Y form a molecule XY2,...Ch. 15 - Prob. 58ECh. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - Prob. 61ECh. 15 - Prob. 62ECh. 15 - Prob. 63ECh. 15 - Prob. 64ECh. 15 - Consider the following statements about first...Ch. 15 - Prob. 66ECh. 15 - Prob. 67ECh. 15 -
Write the electron configurations for (a) Ga3+...Ch. 15 - Prob. 69AECh. 15 - Prob. 70AECh. 15 - Prob. 71AECh. 15 - Prob. 72AECh. 15 - Prob. 73AECh. 15 - Prob. 74AECh. 15 - Consider the hypothetical reaction A(g) 2B(g). A...Ch. 15 - 15.76 As shown in Table 15.2, the equilibrium...Ch. 15 - Prob. 77AECh. 15 - Prob. 78AECh. 15 - Prob. 79AECh. 15 - Prob. 80AECh. 15 - Prob. 81AECh. 15 - Prob. 82AECh. 15 - Prob. 83AECh. 15 - Prob. 84AECh. 15 - Prob. 85AECh. 15 - Prob. 86AECh. 15 - Prob. 87AECh. 15 - Prob. 88AECh. 15 - Prob. 89AECh. 15 - Prob. 90AECh. 15 - Prob. 91AECh. 15 - Prob. 92AECh. 15 - Prob. 93IECh. 15 - Prob. 94IECh. 15 - Prob. 95IECh. 15 - Prob. 96IECh. 15 - Write the equilibrium-constant expression for the...Ch. 15 - In Section 11.5, we defined the vapor pressure of...Ch. 15 - Prob. 99IECh. 15 - Prob. 100IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The lattice energy of an ionic solid such as NaCl is the enthalpy change H for the process in which the solid changes to ions. For example, NaCl(s)Na+(g)+Cl(g)H=786kJ/mol Assume that the ionization energy and electron a affinity are H values for the processes defined by those terms. The ionization energy of Na is 496 kJ/mol. Use this, the electron affinity from Table 8.4, and the lattice energy of NaCl to calculate H for the following process: Na(g)+Cl(g)NaCl(s)arrow_forwardOf the five elements Sn, Si, Sb, O, Te, which has the most endothermic reaction? (E represents an atom.) What name is given to the energy for the reaction? E(g)E+(g)+earrow_forwardDetermine the lattice energy for LiCl(s) given these data: Sublimation enthalpy of Li, 161 kJ/mol; IE, for Li, 520 kJ/mol; BE of Cl2(g), 242 kJ/mol; electron affinity of Cl, 349 kJ/mol; formation enthalpy of LiCl(s), 408.7 kJ/mol.arrow_forward
- 2arrow_forwardGroup the electronic configurations of neutral elements in sets according to those you would expect to show similar chemical properties. 1s²2s²2p63s²3p6 1s²2s²2p²³: Set A 1s²2s²2p 3s²3pº: 1s²2s²2p³ 1s²2s²2p 3s ²3 pº 4s²3d¹⁰4p⁰: 1s²2s²2p 3s²3p³: Determine the chemical symbols for the neutral elements corresponding to the electronic configurations. Use proper formatting; letter case matters. Answer Bank 1s²2s²2p 3s²3 p4s²3d¹04p6 1s²2s²2p 3s²3p³ Set Barrow_forwardUse the data provided below to calculate the lattice energy of RbCl. Is this value greater or less than thelattice energy of NaCl? Explain.Electron affinity of Cl = –349 kJ/mol1st ionization energy of Rb = 403 kJ/molBond energy of Cl2 = 242 kJ/molSublimation energy of Rb = 86.5 kJ/molΔHf [RbCl (s)] = –430.5 kJ/molarrow_forward
- la) For each of the following pairs indicate which element you would expect to have the larger First Ionization Energy and which one would have the larger radius: (a) Ca and Cl; (b) Sn and Tl; (c) Ba and Bi (d) Fr and Cs b) For each pair indicate which Ion you would expect to have the largest Radius: (a) 0²- and O; (b) N³ and Mg²+ (c) Al3* and Al ne Elearrow_forwardCalculate the lattice energy of NaBr(s), given the following thermochemical equations, where A/E and AEA are ionization energy and electron affinity, respectively. Na(s)Na(g) AH = +107 kJ Na(g) Nat(g) + e A/E = +496 kJ -> 1/2 Br₂(g) → Br(g) AHf = +112 kJ - Br(g) + e¯ → Br¯(g) AEA = -325 kJ Na(s) + 1/2 Br₂(g) → NaBr(s) AH = -361 kJ ->> - -1401 kJ -751 kJ +29 kJ -29 kJ +751 kJarrow_forwardQ9. Consider the following elements: The element that has: The largest atomic radius is The lowest ionization energy is (Al, Ca, Mg, Cl, P) The smallest atomic radius is The most electronegative isarrow_forward
- Write electron configurations for the following ions of main group elements: (a) N3−, (b) Ba2+, and (c) Be2+.arrow_forwardUse the following data and the Born-Haber cycle to calculate the first ionization energy (ΔH IE1) of K(g) K(s) → K(g) 89 kJ mol-1 Cl(g) + e– → Cl–(g) -349 kJ mol-1 K(s) + ½ Cl2(g) → KCl(s) -437 kJ mol-1 K(g) → K+(g) + e– ΔH IE1 Cl2(g) → 2Cl(g) 244 kJ mol-1 K+(g) + Cl–(g) → KCl(s) -717 kJ mol-1arrow_forwardThe bars in the graph at right represent the relative magnitudes of the first five ionization energies of an atom. Identify the element and write its complete electron configuration, assuming it comes from (a) Period 2; (b) Period 3; (c) Period 4.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY