
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
4th Edition
ISBN: 9780134639673
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 20ICA
Determine the contents of the variables created or modified by the following MATLAB commands. Assume the following text strings have already been defined: AI contains Artificial Intelligence
Small contains Dog breath
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
University of Babylon
Collage of Engineering/
Al-Musayab
Department of Automobiles
Final Examination/ Stage: 3rd
Notes:
Answer 4 questions only
2023-2202
Subject: Theory of vehicles
Date: 2023\06\10-Saturday
Time: Three Hours
Course 2nd Attempt 1st
Q1: A Hooke's coupling connects two shafts whose axes are inclined at 30°. The
of the driven shaft? Find the maximum value of retardation or acceleration and
driving shaft rotates uniformly at 600 rpm. What are the extreme angular velocities
state the angle where both will occur.
(12.5 Marks)
Q2: Four masses, A, B, C, and D), revolve at equal radii and are equally spaced
along a shaft. The mass B is 7 kg, and the radius of C and D make angles of 90°
and 240°, respectively, with the radius of B. Find the magnitude of the masses A,
C, and D and the angular position of A so that the system may be completely
balanced.
(12.5 Marks)
Q3: A cam has straight worked faces that are tangential to a base circle of diameter
90 mm. The follower is a roller…
Problem 18-26
Added
Extension Springs
Spring Material
ASTM A227
Modulus of Elasticity of the Material in Shear: G 1.150E+07 psi
Average Service
Max Operating Load: F₁ =
100
lb
Max Length between attachment points: L₁ =
60.00 in
20.00 lb
26.00
1.400
Min Operating Load: F₁ =
Min Length between attachment points: L₁ =
Maximum Outside Diameter =
in
in
Results
Note: you select a wire diameter from the "US steel wire gage"
column in table 18-2
Formula
k =
AF/AL
k = (F0-F1)/(Lo - L₁)
Spring Rate: k =
lb/in
Assumed Trial Outside Diameter: OD =
Assumed Trial Mean: D ma
Assumed Design Stress in Spring: Tda
in
1.070
in
102,000 psi
Assumed Wahl Factor: K =
1.2
Calculated Wire Diameter: Dwa
Actual Wire Diameter: Dw
Actual outer diameter: OD =
Actual inner diameter: ID=
Spring Index: C =
See Figure 18-8
Dw=
[8KF Dm
πTd
1/3
in
5' 5' 5' 5'
This corresponds to US Steel 9 wire gage
ID = Dm - Dw
C = Dm/Dw
4C - 1
0.615
K =
+
4C
-
с
Wahl Factor: K =
8KFDm
8KFC
T =
TD
πD
Stress in Spring at F = Fo: To
psi…
CHAIN DRIVE DESIGN
Initial Input Data:
Application: Garage Door Opener
Drive type: AC Motor
Driven machine Chain and Sprocket to pull the door up
Degrees per Radian:
57.2958 degrees
Sprocket Diameter: D =
1.690 in
Number of strands:
Chain number:
1
40
Service factor:
1.3
Table 7-10
No. of
teeth
Computed Data:
Actual Motor Power Input:
0.000 hp
Sprocket Speed (for sprocket attached to
gear shaft)
Design power:
0.00 rpm
0 hp
11
12 0.06 0.15 0.29 0.56 0.99 1.09 1.61 2.64
TABLE 7-7
Horsepower Ratings-Single Strand Roller Chain No. 40
0.500 inch pitch
10 25 50 100 180 200 300 500 700 900 1000 1:
0.06 0.14 0.27 0.52 0.91 1.00 1.48 2.42 3.34 4.25 4.70 !
3.64 4.64 5.13
13
0.07 0.16 0.31 0.61 1.07 1.19 1.75 2.86 3.95
5.02 5.56
Design Decisions-Chain Type and Teeth Numbers:
14
Chain number:
Use Table 7-7
Chain pitch: p =
in
15
Number of Teeth: N =
Per Table 7-7
16
0.08 0.20 0.39 0.75 1.32 1.46 2.15 3.52
0.07 0.17 0.34 0.66 1.15 1.28 1.88 3.08
0.08 0.19 0.36 0.70 1.24 1.37 2.02 3.30 4.55 5.80…
Chapter 15 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Ch. 15.1 - Which of the following are valid MATLAB variable...Ch. 15.1 - Which of the following assignment statements are...Ch. 15.1 - a. Store all workspace variables in the file...Ch. 15.2 - Write MATLAB code to complete the following...Ch. 15.2 - a. Calculate the two roots of the quadratic...Ch. 15.3 - Each problem should be done with a single MATLAB...Ch. 15.3 - Assume a row vector named vals has already been...Ch. 15.3 - a. Place the indices of all nonzero elements of...Ch. 15.3 - a. Create a column vector CV1 containing 123...Ch. 15.3 - Comprehension Check 15-1 0 a. Assume you have four...
Ch. 15.3 - a. Write a single MATLAB command that will create...Ch. 15.4 - a. Create the matrix CCM1=[180.34.11017] using a...Ch. 15.4 - Write single MATLAB statements to perform each of...Ch. 15.4 - Write single MATLAB statements to perform each of...Ch. 15.4 - Write single MATLAB statements to perform each of...Ch. 15.4 - Write single MATLAB statements to perform each of...Ch. 15.4 - For each of the following questions, write a...Ch. 15.5 - a. Create a variable named MTS containing the text...Ch. 15.6 - Assume a cell array named CA has three cells in a...Ch. 15.6 - Prob. 21CCCh. 15.7 - Create a structure array named Resistors...Ch. 15.7 - Use the data stored in MetalData to answer the...Ch. 15.7 - The structure array named Hdwr has the following...Ch. 15 - Which of the following are not valid MATLAB...Ch. 15 - Prob. 2ICACh. 15 - For the following questions, assume that the...Ch. 15 - For each calculation described below, write a...Ch. 15 - For each calculation described below, write a...Ch. 15 - For each of the vectors described below, write a...Ch. 15 - Assume the following vectors are already defined:...Ch. 15 - For each of the following sequences, write a...Ch. 15 - Modify the following statements so that they are...Ch. 15 - Assume you have three equal-length row vectors....Ch. 15 - Write the MATLAB code necessary to create the...Ch. 15 - For each of the following problems, write a single...Ch. 15 - Assume you have two equal-length row vectors IV1...Ch. 15 - Write the MATLAB code necessary to create the...Ch. 15 - Assuming t = [9 10; 11 12] and v = [2 4;6 8;10 12]...Ch. 15 - Determine solutions to the following problems a....Ch. 15 - For each of the following problems except part...Ch. 15 - Assume you have an N M matrix named Gonzo For...Ch. 15 - For each of the following tasks. write a single...Ch. 15 - Determine the contents of the variables created or...Ch. 15 - For each of the following tasks, write a single...Ch. 15 - For each of the following problems, write a single...Ch. 15 - Each of the following questions contains a...Ch. 15 - Prob. 25ICACh. 15 - Assume a cell array CA1 has already been defined....Ch. 15 - Prob. 27ICACh. 15 - You are setting up a structure array named client...Ch. 15 - You have three temperature values [C] stored in...Ch. 15 - You have N temperature values [C] stored in the...Ch. 15 - Assume four row vectors named Prod10, Prod11,...Ch. 15 - You have a 2 N matrix named GasData. The first...Ch. 15 - Assume the matrix M99 has at least two rows and at...Ch. 15 - Assume a matrix named Prod contains data on...Ch. 15 - You are studying the effects of climate change on...Ch. 15 - You are studying the properties of tiny spheres...Ch. 15 - Assume you have a four-column matrix named...Ch. 15 - One very old method of sending secret messages is...Ch. 15 - Prob. 13RQCh. 15 - Prob. 15RQCh. 15 - Refer to the specifications for Review Questions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Input Data: Torque needed to overcome rolling friction in rollers, slides and other moving parts, except for Motor and Worm Gear the worm gear T₁ = Length of travel of door: Time for door to open or close: LD = 50 lb-in. 90 in t= 12.5 seconds Pitch diameter for chain sprocket: DPC 1.690 in Weight of Door: P = No. of worm threads: Nw = Worm Pitch diameter: Dw Diametral pitch: Pd Normal pressure angle: Degrees per Radian: Number of gear teeth: Calculated Data: Linear velocity of door and chain (in/sec): Linear velocity of door and chain (ft/min): Output Speed of Gear and Sprocket: Upward Force due to Weight of Door: Фо = = NG= 240 lb 2 1.250 in 12 14.5 degrees 57.2958 degrees 28 Vα= in/sec VC= ft/min NG = rpm FD lb Net Upward Force on Door: Fou lb Torque on gear ignoring rolling friction: TG = lb-in. Formula = FDU FD-2 x Fo (note: Fo is the Max Operating load of the extension springs). This is also the initial tension in the chain. TG = FDU X DPC/2 This is the also the torque on the…arrow_forwardQ5/A: A car with a track of 1.5 m and a wheelbase of 2.9 m has a steering gear mechanism of the Ackermann type. The distance between the front stub axle pivots is 1.3 m. The length of each track arm is 150 mm, and the length of the track rod is 1.2 m. Find the angle turned through by the outer wheel if the angle turned through by the inner wheel is 30°. (6 Marks) Q5/B: Write True on the correct sentences and False on the wrong sentences listed below:- 1- In automobiles, the power is transmitted from the gearbox to the differential through bevel gears. 2- The minimum radius circle drawn to the cam profile is called the base circle. 3- The Proell governor, compared to the Porter governor, has less lift at the same speed. 4- The balancing of rotating and reciprocating parts of an engine is necessary when it runs at a slow speed. (6.5 Marks) ***Best of Luck *** جامعة بابل UNIVERSITY OF BABYLON Examiner: Mohanad R. Hameed Head of Department: Dr. Dhyai H. Jawadarrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Mid Examination/ Stage: 3rd Subject: Theory of Vehicles Date: 14 \ 4 \2025 Time: 1.5 Hours 2025-2024 Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine the range of speed for this position. Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed. Fe mg E M 2 Q3: In a spring loaded Hartnell type…arrow_forward
- using the theorem of three moments, find all the reactions and supports, I need the calculations onlyarrow_forwardQ.5: (10 Marks) Select the correct answer (choose 10 only) 1. The forward whirling speed is ......... the static structure tilting speed. (a) Less than (b) Higher than (c) equal to 2. The divergence between the forward and backward whirling speeds increases as: (a) The rotating speed increase (b) the polar moment of inertia increases (c) Both (a) and (b) (d) do not change 3. Increasing the system natural frequency can be done by: (a) add masses (b) adding braces and supports (c) increase damping 4. The amplitude of vibration due to external force can be reduced by: (a) Increasing damping (b) Decreasing damping (c) Increasing mass 5. Tuned absorbers are used to: (a) Shift the natural frequency (b) increase damping (c) Increase stiffness 6. Accelerometers sensors contains: г (a) Piezoelectric materials (b) Magnet and coil (c) coil only 7. Increasing the stiffness of the system causes: (a) Less transmitted force (b) more transmitted force (c) Transmitted force does not change 8. The…arrow_forwardQ.1: (15 Marks) Find the first three natural frequencies and mode shapes of the axial and torsional vibration for a steel shaft free at both ends, having a length of 3 m. Find the subsequent axil motion if the shaft is subjected to the following initial conditions, given that E = 210 GPa, G=80 GPa, p = 7800 kg/m³: f(x)=0 v(x) = {1 2.8arrow_forward
- Q.4: (15 Marks) A uniform rotor of mass 500 kg and diametral moment of inertia of 20 kg.m², is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical directions. If the distance between the bearings is 0.6 m: (a) What is the corresponding polar moment of inertia if the backward whirling speed is 80% of the static structure tilting natural frequency? (b) Determine the forward whirling speed. 45.27arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Mid Examination/ Stage: 3rd Subject: Theory of Vehicles Date: 14 \ 4 \2025 Time: 1.5 Hours 2025-2024 Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine the range of speed for this position. Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed. Fe mg E M 2 Q3: In a spring loaded Hartnell type…arrow_forwardQ.2: (15 Marks) = 1400 For the following system, determine the first natural frequency using Dunkerley's equation, Given that the disk has moment of inertia J = 2 kg.m², the shaft has G = 20 GPa, p kg/m³, polar moment of cross-sectional area of the shaft Ip = 8×108 m². 500 mm 220 mm k=200 N/m FOF m=1 kg 14.14 56.56. W слarrow_forward
- Q.2: (15 Marks) = 1400 For the following system, determine the first natural frequency using Dunkerley's equation, Given that the disk has moment of inertia J = 2 kg.m², the shaft has G = 20 GPa, p kg/m³, polar moment of cross-sectional area of the shaft Ip = 8×108 m². 500 mm 220 mm k=200 N/m FOF m=1 kg 14.14 56.56. W слarrow_forwardQ1: In Figure below, pinion A having 15 teeth is fixed to motor shaft. Za-20, Z-15, where B and C are a compound gear wheel. Wheel E is keyed to the machine shaft. Arm F rotates about the same shaft on which A is fixed and carries the compound wheel B, C. If the motor runs at 1200 rpm counter-clockwise, find (a) the speed of the machine shaft and (b) ratio of the reduction gear. C B D Q1: A compound epicyclic gear is shown diagrammatically in Figure below. The gears A, D and E are free to rotate on the axis P. The compound gear B and C rotate together on the axis Q at the end of arm F. All the gears have equal pitch. The number of external teeth on the gears A, B and C are 18, 45 and 21 respectively. The gears D and E are annular gears. The gear A rotates at 100 r.p.m. in the anticlockwise direction and the gear D rotates at 450 r.p.m. clockwise. Find the speed and direction of the arm and the gear E. D E A P F LL B Carrow_forwardCalculate the force in cable AB and the angle θ for the support system shown. Round your final answers to two decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License