Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 107PP
To determine
The density of the doughnut.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sealed cubical container contains helium gas at a temperature of 22.5°C. What is the average velocity of one of these helium atoms? A helium atom has a mass of 6.64x10-27 kg
kB = 1.38 x 10-23 J/K
At 1:00 PM, Sally puts into a refrigerator a can of beer that has been sitting in a room temperature 70°F. The temperature in the refrigerator is 40°F. Fifteen minutes later the temperature of the beer has fallen to 60°F. At some later time, Sally removes the beer from the refrigerator to the room, where at 2:00 PM the temperature of the beer is 60°F. At what time did Sally remove the beer from the refrigerator?
How does temperature affect the time measured by a pendulum clock? More precisely,
consider a clock that uses a simple pendulum. The pendulum consists of a thin metal rod
of length l. Recall that the angular frequency of a simple pendulum is w = g/l.
Suppose on a hot day, the temperature is considerably above “average." How does the
increased temperature affect the clock?
a) The clock runs slow. So it reports a time behind actual time.
b) The clock runs fast. So it reports a time ahead of actual time.
c) The clock is not affected by the temperature.
d) The answer depends on the mass of the simple pendulum.
Chapter 15 Solutions
Physics (5th Edition)
Ch. 15.1 - Prob. 1EYUCh. 15.2 - A force F acts on a circular area of radius r....Ch. 15.3 - Is the increase in pressure from the surface of...Ch. 15.4 - Is the buoyant force exerted on a cubical block of...Ch. 15.5 - A cup is filled to the brim with water. Floating...Ch. 15.6 - Water flows with a speed V through a pipe. If the...Ch. 15.7 - Water flows through a pipe with a varying...Ch. 15.8 - Prob. 8EYUCh. 15.9 - Which pipe requires a greater pressure difference...Ch. 15 - Suppose you drink a liquid through a straw....
Ch. 15 - Considering your answer to the previous question,...Ch. 15 - Prob. 3CQCh. 15 - What holds a suction cup in place?Ch. 15 - Suppose a force of 400 N is required to push the...Ch. 15 - Why is it more practical to use mercury in the...Ch. 15 - An objects density can be determined by first...Ch. 15 - How does a balloonist control the vertical motion...Ch. 15 - Why is it possible for people to float without...Ch. 15 - Prob. 10CQCh. 15 - One day, while snorkeling near the surface of a...Ch. 15 - Since metal is more dense than water, how is it...Ch. 15 - A sheet of water passing over a waterfall is...Ch. 15 - It is a common observation that smoke rises more...Ch. 15 - Prob. 15CQCh. 15 - If you have a hair dryer and a Ping Pong ball at...Ch. 15 - Prob. 1PCECh. 15 - What weight of water is required to fill a...Ch. 15 - You buy a gold ring at a pawn shop. The ring has a...Ch. 15 - A cube of metal has a mass of 0.347 kg and...Ch. 15 - What is the downward force exerted by the...Ch. 15 - Prob. 6PCECh. 15 - A 71-kg person sits on a 3.9-kg chair. Each leg of...Ch. 15 - To prevent damage to floors (and to increase...Ch. 15 - Suppose that when you ride on your 7.85-kg bike...Ch. 15 - Shock Wave Pressure On February 15, 2013, a...Ch. 15 - Predict/Calculate The weight of your 1420-kg car...Ch. 15 - Two drinking glasses, 1 and 2, are filled with...Ch. 15 - Figure 15-39 shows four containers, each filled...Ch. 15 - Water in the lake behind Hoover Dam is 221 m deep....Ch. 15 - In a classroom demonstration, the pressure inside...Ch. 15 - As a storm front moves in, you notice that the...Ch. 15 - Prob. 17PCECh. 15 - A circular wine barrel 75 cm in diameter will...Ch. 15 - A cylindrical container with a cross-sectional...Ch. 15 - Prob. 20PCECh. 15 - Predict/Calculate A water storage tower is filled...Ch. 15 - Predict/Calculate You step into an elevator...Ch. 15 - Suppose you pour water into a container until it...Ch. 15 - Referring to Example 15-8, suppose that some...Ch. 15 - Prob. 25PCECh. 15 - BIO Predict/Calculate The patient in Figure 15-41...Ch. 15 - A cylindrical container 1.0 m tall contains...Ch. 15 - Prob. 28PCECh. 15 - Lead is more dense than aluminum. (a) Is the...Ch. 15 - A fish adjusts its buoyancy to hover in one place...Ch. 15 - A raft is 3.7 m wide and 6.1 m long. When a horse...Ch. 15 - Prob. 32PCECh. 15 - Prob. 33PCECh. 15 - A 3.2-kg balloon is filled with helium (density =...Ch. 15 - A hot-air balloon plus cargo has a mass of 312 kg...Ch. 15 - In the lab you place a beaker that is half full of...Ch. 15 - Predict/Explain A block of wood has a steel ball...Ch. 15 - Predict/Explain In the preceding problem, suppose...Ch. 15 - Measuring Density with a Hydrometer A hydrometer,...Ch. 15 - Predict/Explain Referring to Example 15-12,...Ch. 15 - On a planet in a different solar system the...Ch. 15 - An air mattress is 2.3 m long, 0.66 m wide, and 14...Ch. 15 - A solid block is attached to a spring scale. When...Ch. 15 - Prob. 44PCECh. 15 - BIO A person weighs 756 N in air and has a...Ch. 15 - Predict/Calculate A log floats in a river with...Ch. 15 - A person with a mass of 78 kg and a volume of...Ch. 15 - Predict/Calculate A block of wood floats on water....Ch. 15 - A piece of lead has the shape of a hockey puck,...Ch. 15 - Predict/Calculate A lead weight with a volume of...Ch. 15 - To water the yard, you use a hose with a diameter...Ch. 15 - Water flows through a pipe with a speed of 2.4...Ch. 15 - To fill a childs inflatable wading pool, you use a...Ch. 15 - Prob. 54PCECh. 15 - Prob. 55PCECh. 15 - Prob. 56PCECh. 15 - A river narrows at a rapids from a width of 12 m...Ch. 15 - Prob. 58PCECh. 15 - BIO Plaque in an Artery The buildup of plaque on...Ch. 15 - A horizontal pipe contains water at a pressure of...Ch. 15 - Unfiltered olive oil must flow at a minimum speed...Ch. 15 - Prob. 62PCECh. 15 - Predict/Calculate Water flows through a horizontal...Ch. 15 - A garden hose is attached to a water faucet on one...Ch. 15 - A water tank springs a leak. Find the speed of...Ch. 15 - (a) Find the pressure difference on an airplane...Ch. 15 - On a vacation flight, you look out the window of...Ch. 15 - Prob. 68PCECh. 15 - Predict/Calculate During a thunderstorm, winds...Ch. 15 - A garden hose with a diameter of 1.6 cm has water...Ch. 15 - Prob. 71PCECh. 15 - BIO Vasodilation When the body requires an...Ch. 15 - BIO (a) Find the volume of blood that flows per...Ch. 15 - BIO An Occlusion in an Artery Suppose an occlusion...Ch. 15 - Motor Oil The viscosity of 5W-30 motor oil changes...Ch. 15 - Prob. 76PCECh. 15 - Prob. 77GPCh. 15 - CE Predict/Explain A person floats in a boat in a...Ch. 15 - CE A person floats in a boat in a small backyard...Ch. 15 - CE The three identical containers in Figure 15-46...Ch. 15 - Prob. 81GPCh. 15 - A water main broke on Lake Shore Drive in Chicago...Ch. 15 - Prob. 83GPCh. 15 - BIO Power Output of the Heart The power output of...Ch. 15 - A solid block is suspended from a spring scale....Ch. 15 - A wooden block with a density of 710 kg/m3 and a...Ch. 15 - Predict/Calculate Floating a Ball and Block A...Ch. 15 - The Depth of the Atmosphere Evangelista Torricelli...Ch. 15 - The Hydrostatic Paradox I Consider the lightweight...Ch. 15 - The Hydrostatic Paradox II Consider the two...Ch. 15 - Predict/Calculate A backyard swimming pool is...Ch. 15 - A prospector finds a solid rock composed of...Ch. 15 - Predict/Calculate (a) If the tension in the string...Ch. 15 - Prob. 94GPCh. 15 - Prob. 95GPCh. 15 - Prob. 96GPCh. 15 - BIO A person weighs 685 N in air but only 497 N...Ch. 15 - Thunderstorm Outflow Rain-cooled air near the core...Ch. 15 - A horizontal pipe carries oil whose coefficient of...Ch. 15 - BIO A patient is given an injection with a...Ch. 15 - Going Over Like a Mythbuster Lead Balloon On one...Ch. 15 - A round wooden log with a diameter of 73 cm floats...Ch. 15 - Figure 15-52 Problem 103 103. The hollow,...Ch. 15 - A geode is a hollow rock with a solid shell and an...Ch. 15 - A tank of water filled to a depth d has a hole in...Ch. 15 - The water tank in Figure 15-53 is open to the...Ch. 15 - Prob. 107PPCh. 15 - Prob. 108PPCh. 15 - Doughnuts are cooked by dropping the dough into...Ch. 15 - Prob. 110PPCh. 15 - Predict/Calculate Referring to Example 15-8...Ch. 15 - Referring to Example 15-8 Find the height...Ch. 15 - Referring to Example 15-24 (a) Find the height H...Ch. 15 - Prob. 116PP
Knowledge Booster
Similar questions
- Pr4. The pressure of an ideal gas in a closed rigid container is 0.6 atm at 35 degrees C. The number of molecules is 5×1022 (one mole of gas contains 6 x 1023 molecules and 1 atm = 1.01 × 105 Pa) a) What is the pressure in Pa and temperature in K of the gas? b) How many moles of gas is in the container? c) What is the volume of the container? d) If the container is heated to 120 degrees C, and volume remains the same what is the pressure of the gas in atm?arrow_forwardA 17 cm radius air duct is used to replenish the air of a room 8.8m•5.0m•3.8m every 15 mins. How fast does the air flow in the duct?arrow_forward*10. D A cylindrical glass of water (H;O) has a radius of 4.50 cm and a height of 12.0 cm. The density of water is 1.00 g/cm?. How many moles of water molecules are contained in the glass?arrow_forward
- In order to increase the fuel efficiency and reduce structural failure of airplanes, new composite materials have been designed to replace airplane fuselages made of aluminum. Composite materials are low in density and tolerant to damage. One drawback of this new material is that it is not conductive. This increases the chance that a lightning strike will damage the plane. Engineers have redesigned the composites by adding a material to the original composition that is conductive. Identify one anticipated effect of this new material. Explain why the addition of the new material to the composite fuselage design will result in a tradeoffarrow_forward25 The deepest point in Earth’s oceans is about 11,000 m below the surface of the water. What is the pressure on a submarine that dives to that depth to perform a survey? Take the density of the seawater to be 1027 kg/m3 and 1 atm = 15 psi. Group of answer choices 5,000 psi 15 psi 1.2 x 106 psi 16,400 psiarrow_forwardA Mixture Problem In an oil refinery, a storage tank contains 10,000 [L] of gasoline that initially has 50 [kg] of an additive dissolved in it. In preparation for winter weather, gasoline containing 0.2 [kg] of additive per litre is pumped into the tank at a rate of 200 [L/min]. 200 L/min containing 0.2 kg/L 220 L/min containing kg/L Where y is the amount of chemical in the container at time t, and V is the total volume of liquid in the container at time t, a) Write a formula V(t) for the capacity (volume) of the tank at any time. b) Find the domain of V for this problem. c) Find the rate of incoming additive in [kg/min]. d) Find the rate of outgoing additive in [kg/min]. e) Express the rate of change of the amount of chemical in the container at time t in its standard form. f) Calculate how much of the additive is in the tank 25 minutes after the pumping process begins.arrow_forward
- Equal masses of ethane (C2H6) and hydrogen gas are mixed in an empty container at 25 degrees Celsius. The fraction of the total pressure exerted by hydrogen is A .1:1 B. 1:16 C. 1:2 D. 15:16 If helium and methane (CH4) are allowed to diffuse out of the container under similar conditions of temperature and pressure, then the ratio of rate of diffusion of helium to methane isA .1:2B. 4:1C. 2:1D. 1:1arrow_forward(a) Prepare a table like Table 21.1 for the following occurrence. You toss four coins into the air simultaneously and then record the results of your tosses in terms of the numbers of heads (H) and tails (T) that result. For example, HHTH and HTHH are two possible ways in which three heads and one tail can be achieved. (b) On the basis of your table, what is the most probable result recorded for a toss?arrow_forwardReview. (a) Derive an expression for the buoyant force on a spherical balloon, submerged in water, as a function of the depth h below the surface, the volume Vi of the balloon at the surface, the pressure P0 at the surface, and the density w of the water. Assume the water temperature does not change with depth, (b) Does the bouyant force increase or decrease as the balloon is submerged? (c) At what depth is the buoyant force one-half the surface value?arrow_forward
- Object A is placed in thermal contact with a very large object B of unknown temperature. Objects A and B are allowed to reach thermal equilibrium; object Bs temperature does not change due to its comparative size. Object A is removed from thermal contact with B and placed in thermal contact with another object C at a temperature of 40C. Objects A and C are of comparable size. The temperature of C is observed to be unchanged. What is the temperature of object B?arrow_forwardWhen the metal ring and metal sphere in Figure CQ10.14 are both at room temperature, the sphere can barely be passed through the ring, (a) After the sphere is warmed in a flame, it cannot be passed through the ring. Explain, (b) What if the ring is warmed and the sphere is left at room temperature? Does the sphere pass through the ring? Figure CQ10.14arrow_forwardIt is the morning of a day that will become hot. You just purchased drinks for a picnic and are loading them, with ice, into a chest in the back of your car. (a) You wrap a wool blanket around the chest. Does doing so help to keep the beverages cool, or should you expect the wool blanket to warm them up? Explain your answer. (b) Your younger sister suggests you wrap her up in another wool blanket to keep her cool on the hot day like the ice chest. Explain your response to her.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning