Brock Biology of Microorganisms (15th Edition)
15th Edition
ISBN: 9780134261928
Author: Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 3MQ
- What is the difference between cyclic and noncyclic photophosphorylation?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hello,
Can tou please help me to develope the next topic (in a esquematic format) please?:
Function and Benefits of Compound Microscopes
Thank you in advance!
Identify the AMA CPT assistant that you have chosen.
Explain your interpretation of the AMA CPT assistant.
Explain how this AMA CPT assistant will help you in the future.
what is the difference between drug education programs and drug prevention programs
Chapter 14 Solutions
Brock Biology of Microorganisms (15th Edition)
Ch. 14.1 - What is the fundamental difference between an...Ch. 14.1 - What is the purpose of chlorophyll and...Ch. 14.1 - Why can phototrophic green bacteria grow at light...Ch. 14.1 - What are the functions of light-harvesting and...Ch. 14.2 - In which phototrophs are carotenoids found?...Ch. 14.2 - How does the structure of a phycobilin compare...Ch. 14.2 - Phycocyanin is blue-green. What color of light...Ch. 14.2 - What accessory pigments are present in...Ch. 14.3 - What parallels exist in the processes of...Ch. 14.3 - What is reverse electron flow and why is it...
Ch. 14.3 - What is the difference between cyclic and...Ch. 14.3 - What is reverse electron transport and why is it...Ch. 14.4 - Differentiate between cyclic and noncyclic...Ch. 14.4 - What is the key role of light energy in the...Ch. 14.4 - What evidence is there that anoxygenic and...Ch. 14.4 - Prob. 1CRCh. 14.5 - Prob. 1MQCh. 14.5 - How much NADPH and ATP is required to make one...Ch. 14.5 - Contrast autotrophy in the following phototrophs:...Ch. 14.5 - QWhat is a carboxysome, and what is its role in...Ch. 14.6 - Prob. 1MQCh. 14.6 - What is FeMo-co and what does it do?Ch. 14.6 - How is acetylene useful in studies of nitrogen...Ch. 14.6 - How might the ability to fix nitrogen help a...Ch. 14.7 - In a coupled reaction, how can you tell the...Ch. 14.7 - How does aerobic respiration differ from anaerobic...Ch. 14.7 - Describe the major differences between...Ch. 14.7 - Prob. 1CRCh. 14.8 - What enzyme is required for hydrogen bacteria to...Ch. 14.8 - Why is reverse electron flow unnecessary in H2...Ch. 14.8 - QWhich inorganic electron donors are used by the...Ch. 14.9 - Prob. 1MQCh. 14.9 - In terms of intermediates, how does the Sox system...Ch. 14.9 - Prob. 1CRCh. 14.10 - Prob. 1MQCh. 14.10 - What is the function of rusticyanin and where is...Ch. 14.10 - How can Fe2+ be oxidized under anoxic conditions?Ch. 14.10 - Prob. 1CRCh. 14.11 - Prob. 1MQCh. 14.11 - Prob. 2MQCh. 14.11 - Prob. 1CRCh. 14.12 - What are the electron donor and acceptor in the...Ch. 14.12 - What does electron transport in anammox bacteria...Ch. 14.12 - Compare CO2 fixation in anammox bacteria and...Ch. 14.12 - Prob. 1CRCh. 14.13 - For Escherichia coli, why is more energy released...Ch. 14.13 - How do the products of NO3 reduction differ...Ch. 14.13 - Where is the dissimilative nitrate reductase found...Ch. 14.13 - Prob. 1CRCh. 14.14 - How is SO42 converted to SO32 during dissimilative...Ch. 14.14 - Contrast the growth of Desulfovibrio on H2 versus...Ch. 14.14 - Give an example of sulfur disproportionation.Ch. 14.14 - Prob. 1CRCh. 14.15 - Prob. 1MQCh. 14.15 - What is reductive dechlorination and why is it...Ch. 14.15 - How does anaerobic glucose catabolism differ in...Ch. 14.15 - Compare and contrast ferric iron reduction with...Ch. 14.16 - What is the purpose of CO dehydrogenase?Ch. 14.16 - If acetogens conserve energy using the Rnf...Ch. 14.16 - What is electron bifurcation and what role does it...Ch. 14.16 - Compare and contrast acetogens with methanogens in...Ch. 14.17 - Which coenzymes function as C1 carriers in...Ch. 14.17 - In methanogens growing on H2 + CO2, how is carbon...Ch. 14.17 - How is ATP made in methanogenesis when the...Ch. 14.17 - What are the major differences in the conservation...Ch. 14.18 - When using CH4 as electron donor, why is...Ch. 14.18 - In which two ways does the ribulose monophosphate...Ch. 14.18 - What is unique about methanotrophy in...Ch. 14.18 - Prob. 1CRCh. 14.19 - Why is H2 produced during many types of...Ch. 14.19 - Why is acetate formation in fermentation...Ch. 14.19 - Define the term substrate-level phosphorylation:...Ch. 14.20 - How can homo- and heterofermentative metabolism be...Ch. 14.20 - Butanediol production leads to greater ethanol...Ch. 14.20 - QWhat are the major fermentation products of...Ch. 14.21 - Compare the mechanisms for energy conservation in...Ch. 14.21 - What type of substrates are fermented by...Ch. 14.21 - What are the substrates for the Clostridium...Ch. 14.21 - Prob. 1CRCh. 14.22 - Why does Propionigenium modestum require sodium...Ch. 14.22 - Of what benefit is the organism Oxalobacter to...Ch. 14.22 - Prob. 3MQCh. 14.22 - Give an example of a fermentation that does not...Ch. 14.23 - Give an example of interspecies H2 transfer. Why...Ch. 14.23 - Why can a pure culture of Syntrophomonas grow on...Ch. 14.23 - Why is syntrophy also called interspecies H2...Ch. 14.24 - How do monooxygenases differ in function from...Ch. 14.24 - What is the final product of catabolism of a...Ch. 14.24 - Prob. 3MQCh. 14.24 - How do monooxygenases differ from dioxygenases in...Ch. 14.25 - What is the benzoyl-CoA pathway, and how might it...Ch. 14.25 - How is hexane oxygenated during anoxic catabolism?Ch. 14.25 - Prob. 1CRCh. 14 - The growth rate of the phototrophic purple...Ch. 14 - Prob. 2AQCh. 14 - A fatty acid such as butyrate cannot be fermented...Ch. 14 - When methane is made from CO2 (plus H2) or from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- What is the formula of Evolution? Define each item.arrow_forwardDefine the following concepts from Genetic Algorithms: Mutation of an organism and mutation probabilityarrow_forwardFitness 6. The primary theory to explain the evolution of cooperation among relatives is Kin Selection. The graph below shows how Kin Selection theory can be used to explain cooperative displays in male wild turkeys. B When paired, subordinant males increase the reproductive success of their solo, dominant brothers. 0.9 C 0 Dominant Solo EVOLUTION Se, Box 13.2 © 2023 Oxford University Press rB rB-C Direct Indirect Fitness fitness fitness gain Subordinate 19 Fitness After A. H. Krakauer. 2005. Nature 434: 69-72 r = 0.42 Subordinant Dominant a) Use Hamilton's Rule to show how Kin Selection can support the evolution of cooperation in this system. Show the math. (4 b) Assume that the average relatedness among male turkeys in displaying pairs was instead r = 0.10. Could kin selection still explain the cooperative display behavior (show math)? In this case, what alternative explanation could you give for the behavior? (4 pts) 7. In vampire bats (pictured below), group members that have fed…arrow_forward
- Examine the following mechanism and classify the role of each labeled species in the table below. Check all the boxes that applyarrow_forward1. Define and explain the two primary evolutionary consequences of interspecific competitionarrow_forward2 A linear fragment of DNA containing the Insulin receptor gene is shown below, where boxes represent exons and lines represent introns. Assume transcription initiates at the leftmost EcoRI site. Sizes in kb are indicated below each segment. Vertical arrows indicate restriction enzyme recognition sites for Xbal and EcoRI in the Insulin receptor gene. Horizontal arrows indicate positions of forward and reverse PCR primers. The Horizontal line indicates sequences in probe A. Probe A EcoRI Xbal t + XbaI + 0.5kb | 0.5 kb | 0.5 kb | 0.5kb | 0.5 kb | 0.5 kb | 1.0 kb EcoRI On the gel below, indicate the patterns of bands expected for each DNA sample Lane 1: EcoRI digest of the insulin receptor gene Lane 2: EcoRI + Xbal digest of the insulin receptor gene Lane 3: Southern blot of the EcoRI + Xbal digest insulin receptor gene probed with probe A Lane 4: PCR of the insulin receptor cDNA using the primers indicated Markers 6 5 4 1 0.5 1 2 3 4arrow_forward
- 4. (10 points) woman. If both disease traits are X-linked recessive what is the probability A man hemizygous for both hemophilia A and color blindness mates with a normal hemophilia A nor colorblindness if the two disease genes show complete that a mating between their children will produce a grandson with neither a. linkage? (5 points) that a mating between their children will produce a grandson with both hemophilia A and colorblindness if the two disease genes map 40 cM apart? (5 points)arrow_forward2 2 1.5 1.0 0.67 5. (15 points) An individual comes into your clinic with a phenotype that resembles Down's syndrome. You perform CGH by labeling the patient's hobe DNA red and her mother's DNA green. Plot the expected results of the Red:Green ratio if: A. The cause of the syndrome was an inversion on one chromosome 21 in the child 0.5 1.5 1.0 0.67 0.5 21 p 12345678910 CEN q 123456789 10 11 12 13 14 15 16 17 18 19 B. The cause of the syndrome was a duplication of the material between 21q14 and 21q18 on one chromosome in the child 21 p 123456789 10 CEN q 12345678910 11 12 13 14 15 16 17 18 19 C. The mother carried a balanced translocation that segregated by adjacent segregation in meiosis I and resulted in a duplication in the child of the material distal to the translocation breakpoint at 21q14. 1.5 1.0 0.67 0.5 21 p 12345678910 CEN q 123456789 10 11 12 13 14 15 16 17 18 19 mom seal bloarrow_forward4. You find that all four flower color genes map to the second chromosome, and perform complementation tests with deletions for each gene. You obtain the following results: (mutant a = blue, mutant b = white, mutant c = pink, mutant d = red) wolod Results of Complementation tests suld Jostum Mutant a b с Del (2.2 -2.6) blue white pink purple Del (2.3-2.8) blue white pink red Del (2.1 -2.5) blue purple pink purple Del (2.4-2.7) purple white pink red C d Indicate where each gene maps: a b ori ai indW (anioq 2) .8arrow_forward
- lon 1. Below is a pedigree of a rare trait that is associated with a variable number repeat. PCR was performed on individuals using primers flanking the VNR, and results are shown on the agarose gel below the pedigree. I.1 1.2 II.1 II.2 II.3 II.4 II.5 II.6 11.7 III.1 III.2 III.3 III.4etum A. (5 points) What is the mode of inheritance? B. (10 points) Fill in the expected gel lanes for II.1, II.5, III.2, III.3 and III.4 C. (5 points) How might you explain the gel results for II.4?arrow_forwardTo study genes that create the purple flower color in peas, you isolate 4 amorphic mutations. Each results in a flower with a different color, described mutant a = blue mutant c = pink mutant b = white mutant d = red A. In tests of double mutants, you observe the following phenotypes: mutants a and b = blue mutants b and c = white mutants c and d = pink Assuming you are looking at a biosynthetic pathway, draw the pathway indicating which step is affected by each mutant. B. What is the expected flower color of a double mutant of a and c?arrow_forwardExplain the principle of MALDI-TOF mass spectrometry.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College
Photosynthesis & Respiration | Reactions | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=3XIyweZg6Sw;License: Standard YouTube License, CC-BY