Concept explainers
The human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of millimeters of H2O because body fluids, including the cerebrospinal fluid, typically have the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap as illustrated in Figure P14.8. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Some conditions that block or inhibit the flow of cerebrospinal fluid can be investigated by means of Queckenstedt’s test. In this procedure, the veins in the patient’s neck are compressed to make the blood pressure rise in the brain, which in turn should be transmitted to the cerebrospinal fluid. Explain how the level of fluid in the spinal tap can be used as a diagnostic tool for the condition of the patient’s spine.
Figure P14.8
Trending nowThis is a popular solution!
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
- A manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardHow many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forward
- How many cubic meters of helium are required to lift a balloon with a 400-kg payload to a height of 8 000 m? Take He = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression air = 0ez/8, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forwardA horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forward
- The human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of millimeters of H2O because body fluids, including the cerebrospinal fluid, typically have the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap as illustrated in Figure P14.8. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Some conditions that block or inhibit the flow of cerebrospinal fluid can be investigated by means of Queckenstedts test. In this procedure, the veins in the patients neck are compressed to make the blood pressure rise in the brain, which in turn should be transmitted to the cerebrospinal fluid. Explain how the level of fluid in the spinal tap can be used as a diagnostic tool for the condition of the patients spine. Figure P14.8arrow_forwardA hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forward
- (a) Calculate the absolute pressure at an ocean depth of 1 000 m. Assume the density of seawater is 1 030 kg/m3 and the air above exerts a pressure of 101.3 kPa. (b) At this depth, what is the buoyant force on a spherical submarine having a diameter of 5.00 m?arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning