Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 78P
Use a computer to form the sum implied in the caption of Figure 14.17, taking ω = 1 s−1 and using (a) the three terms shown and (b) 10 terms (note that only odd harmonics appear in the sum). Plot your result over one cycle (t from 0 to 2π) and compare with the square wave shown in the figure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform plane wave has the generic expression
Φ(z,t) = A cos(ωt – kz + δ)
with the following given parameter values: wave amplitude = 10, wave frequency in Hz f = 500 Hz, phase velocity vph = 10 m/s, and the phase angle δ = 60o. Find the values of the parameters A, ω, and k.
..
The provided image shows vibrations from a car idle at 33 Hz. The fourier transform of the data is shown in the bottom plot. Are the following statements true or false?
A fourier series that would represent the vibrational data would contain two frequences of 15 Hz and 30 Hz.
This data has a vibrational noise at a fundamental frequency of 15 Hz as well as the three overtones to this fundamental.
The oscillations seen in the data are due to the vibrational noise at 15 Hz and 30 Hz.
Problem 5
(a) show that the following function satisfies the wave equation (this is a spherical wave). Show
that its velocity is velocity v = **
f(r,t) = C = cos(kr - wt)
The wave fronts are spherical shells at radius r that propagate outward from the origin; the
amplitude of the disturbance decreases as the distance from the source.
For this, use the Laplacian in spherical coordinates:
1 0
√²f=
Acoustic Monopole
af
1 მ
r²sine de
sinė
1 a²ƒ
r²sin²0 04²
Chapter 14 Solutions
Essential University Physics (3rd Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
5. You are driving down the road at a constant speed. Another car going a bit faster catches up with you and pa...
College Physics: A Strategic Approach (3rd Edition)
68. Correct any incorrect equations. If no reaction occurs, write NO REACTION.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
A wild-type fruit fly (heterozygous for gray body color and normal wings) is mated with a black fly with vestig...
Campbell Biology (11th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sinusoidal wave of Vmax = 10 V and T= 40 ms periodic time, Calculate the following: Veff=Vrms of this wave: The frequency f : Write the equation of this wave using V=Vmax sin [ (2πf)]tarrow_forwardProblem 1: A string of length 1.5 m oscillates in the standing wave pattern shown in the figure below. The string has a linear density u = acceleration due to gravity is g = 9.8 m/sec². (a) What is the speed of the waves? (b) What is the frequency of the oscillations? (c) Suppose the string continues to oscillate with the frequency you found in part (b). How many nodes will the standing wave pattern have if the suspended mass is now M 7.35 x 10-3 kg/m and the suspended mass is M 1.2 kg. The 10.8 kg? signal generator Marrow_forwardThe period of oscillation T of a water surface wave isassumed to be a function of density ρ , wavelength l , depth h , gravity g , and surface tension Y . Rewrite this relationshipin dimensionless form. What results if Y is negligible?Hint: Take l , ρ , and g as repeating variables.arrow_forward
- A simple harmonic progressive wave of amplitude 2 mm and frequency 500 Hz travels with a velocity of 350 m/s in given medium. Write down the equation of the wave in S.I. units.arrow_forwardA wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s in case the value of amplitude A corresponds to the first letter of your name: letter E A. A=0.1 mB. A=0.15 mC. A=0.2 mÇ. A=0.25 mD. A=0.3 mDh. A=0.35 mE. A=0.4 mË. A=0.45 mF. A=0.5 m G. A=0.55 mGj. A=0.6 mH. A=0.65 mI. A=0.7 mJ. A=0.75 mK. A=0.8 mL. A=0.85 mLl. A=0.9 mM. A=0.95 m N. A=1.05 mNj. A= 1.1 mO. A=1.15 mP. A=1.2 mQ. A=1.25 mR. A=1.3 mRr. A=1.35 mS. A=1.4 mSh. A=1.45 m T. A=1.5 mTh. A=1.55 mU. A=1.6 mV. A=1.65 mX. A=1.7 mXh. A=1.75 mY. A=1.8 mZ. A=1.85 mZh. A=1.9 m 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results?…arrow_forwardA string of 1 m length clamped at both ends is plucked in the middle to generate a standing wave. Take the frequency of the first harmonic to be 10 Hz and the amplitude of the oscillations to be 2 cm. Consider the motion to be a simple harmonic one where appropriate. Calculate the speed of the progressive waves that result in the standing wave. Provide your answer in SI units. Answer: Choose... +arrow_forward
- A string of 1 m length clamped at both ends is plucked in the middle to generate a standing wave. Take the frequency of the first harmonic to be 10 Hz and the amplitude of the oscillations to be 2 cm. Consider the motion to be a simple harmonic one where appropriate. Calculate the amplitude of the progressive waves that result in the standing wave. Provide your answer in SI units. Answer: Choose... +arrow_forwardUse dimensional analysis to find how the speed vvv of a wave on a string of circular cross section depends on the tension in the string, T, the radius of the string, R, and its mass per volume, ρ (rho). Express your answer in terms of the variables T, R, and ρ(rho).arrow_forwardSuppose that there is a seismic P wave traveling at 5.1 103 m/s with a wavelength of 2.1 x 103m. (Just need help finiding part b) (a) Find the wave's frequency. 2.428Hz(b) Find the average speed of a particle of the earth's surface at a point where the wave amplitude is 2.3 cm. (The answer is not 0.351)arrow_forward
- Consider the harmonic travelling wavearrow_forwardWhat is the frequency observed with a wavelengh of (6.1x10^2) nm? Answer with 2 significant figures and it must be in scientific notation. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: Answer x10arrow_forwardA tuning fork is held a certain distance from your ears and struck. Your eardrums’ vibrations after t seconds are given by p = 3 sin 2t. When a second tuning fork is struck, the formula p = 2sin(2t + π) describes the effects of the sound on the eardrums’ vibrations. The total vibrations are given by p = 3 sin 2t + 2 sin(2t + π). Solve, a. Simplify p to a single term containing the sine. b. If the amplitude of p is zero, no sound is heard. Based on your equation in part (a), does this occur with the two tuning forks in this exercise? Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY