Concept explainers
A container holds 0.550 kg of ice at −15.0°C. The mass of the container can be ignored. Heat is supplied to the container at the constant rate of 800.0 J/min for 500.0 min. (a) After how many minutes does the ice start to melt? (b) After how many minutes, from the time when the heating is first started, does the temperature begin to rise above 0.00°C? (c) Plot a curve showing the temperature as a function of the time elapsed.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Physics for Scientists and Engineers with Modern Physics
The Cosmic Perspective
Sears And Zemansky's University Physics With Modern Physics
Essential University Physics: Volume 2 (3rd Edition)
Essential University Physics: Volume 1 (3rd Edition)
- In 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardA sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forward
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardOne of a dilute diatomic gas occupying a volume of 10.00 L expands against a constant pressure of 2.000 atm when it is slowly heated. If the temperature of the gas rises by 10.00 K and 400.0 J of heat are added in the process, what is its final volume?arrow_forwardA solid steel cube is stored in a freezer, where the temperature is -20.0 °C. While the cube is in the freezer, you measure its side length (L) to be 1.75050 meters. The cube is then placed outside for a long time, so that the temperature of the cube reaches the temperature of the air outside. As a result, the side length increases to 1.75170 meters due to thermal expansion. The coefficient of linear expansion for steel is 12.0×10-6 °C-1. (a) What is the temperature of the air outside? Give your answer in degrees Celsius ('C). (b) What is the volume of the cube when its temperature is 20.0 °C? Give your answer in cubic meters (m3).arrow_forward
- When air is inhaled, it quickly becomes saturated with water vapor as it passes through the moist upper airways. When a person breathes dry air, about 25 mg of water are exhaled with each breath. At 12 breaths/min, what is the rate of energy loss due to evaporation? Express your answer in both watts and Calories per day. At body temperature, the heat of vaporization ofwater is Lv = 24 × 105 J/kg.arrow_forwardAt time t = 0, a vessel contains a mixture of 10 kg of water and an unknown mass of ice in equilibrium at 0°C. The temperature of the mixture is measured over a period of an hour, with the following results: During the first 50 min, the mixture remains at 0°C; from 50 min to 60 min, the temperature increases steadily from 0°C to 2°C. Neglecting the heat capacity of the vessel, determine the mass of ice that was initially placed in it. Assume a constant power input to the container.arrow_forwardSuppose 8.50 ✕ 105 J of energy are transferred to 1.79 kg of ice at 0°C. The latent heat of fusion and specific heat of water are Lf = 3.33 ✕ 105 J/kg and c = 4186 J (kg · °C) . HINT (a) Calculate the energy (in J) required to melt all the ice into liquid water. (Enter your answer to at least three significant figures.) J (b) How much energy (in J) remains to raise the temperature of the liquid water? (Enter your answer to at least three significant figures.) J (c) Determine the final temperature of the liquid water in Celsius. °Carrow_forward
- In everyday experience, the measures of temperature most often used are Fahrenheit F and Celsius C. Recall that the relationship between them is given by the following formula. F = 1.8C + 32 Physicists and chemists often use the Kelvin temperature scale. You can get kelvins K from degrees Celsius by using the following formula. K = C + 273.15 (a) Calculate that value.K(25) = (b) Find a formula expressing the temperature C in degrees Celsius as a function of the temperature K in kelvins. C = (c) Find a formula expressing the temperature F in degrees Fahrenheit as a function of the temperature K in kelvins. F = (d) What is the temperature in degrees Fahrenheit of an object that is 272 kelvins?arrow_forwardA glass coffee pot has a circular bottom with a 9.00-cm diameter in contact with a heating element that keeps the coffee warm with a continuous heat transfer rate of 50.0 W(a) What is the temperature of the bottom of the pot, if it is 3.00 mm thick and the inside temperature is 60.0ºC ?(b) If the temperature of the coffee remains constant and all of the heat transfer is removed by evaporation, how many grams per minute evaporate? Take the heat of vaporization to be 2340 kJ/kg.arrow_forwardIn very cold weather, a significant mechanism for heat loss by the human body is the energy expended in warming the air taken into the lungs with each breath. (a) On a cold winter day when the temperature is - 20 ℃, what amount of heat is needed to warm body temperature (37 ℃) the 0.60 L of air exchanged with each breath? Assume that the specific heat of air is 1020 J/kg.K and that 1.0 L of air has a mass of 1.3 x 10-3 kg. (b) How much heat is lost per hour if the respiration rate is 20 breaths per minute?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning