Principles Of Geotechnical Engineering, Si Edition
Principles Of Geotechnical Engineering, Si Edition
9th Edition
ISBN: 9781305970953
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 14, Problem 14.11P
To determine

Find the magnitude and location of the passive force Ppe due to earthquake conditions.

Expert Solution & Answer
Check Mark

Answer to Problem 14.11P

The magnitude of the passive force Ppe due to earthquake conditions is 9,823kN/m_.

The location of the resultant measured from the bottom of the wall is 3.12m_.

Explanation of Solution

Given information:

The magnitude of surcharge loading (q) is 95kN/m2.

The unit weight γ of the backfill is 18kN/m3.

The height (H) of the retaining wall is 7.0 m.

The soil friction angle ϕ is 40°.

The angle of wall friction δ is 20°.

The cohesion c of the soil is 30kN/m2.

The soil-wall interfall adhesion ca is 0.

The horizontal inertial kh force is 0.2.

The vertical inertial kv force is 0.2.

Calculation:

Determine the ratio of angle of wall friction to the soil friction angle.

δϕ=20°40°=0.5

Determine the ratio of soil-wall interfall adhesion to the cohesion.

cac=030=0

Determine the magnitude of the passive force due to earthquake conditions using the formula.

Ppe=[12γH2Kpγ(e)+qHKpq(e)+2cHKpc(e)]1cosδ (1)

Here, Kpγ(e), Kpq(e), and Kpc(e) are the passive earth-pressure coefficients in the normal direction.

Refer Figure (14.9b) “Variation of Kpγ(e) (a) δϕ=1; (b)” in the text book.

For δϕ=0.5;

Take the value of Kpγ(e) as 6.75.

Refer Figure (14.10b) “Variation of Kpγ(e) (a) δϕ=1; (b)” in the text book.

For δϕ=0.5;

Take the value of Kpq(e) as 6.67.

Refer Table (14.7) “Variation of Kpc(e)” in the text book.

For the ratio of angle of wall friction to the soil friction angle is 0.5.

The value of Kpc(e) is 4.33

Substitute 18kN/m3 for γ, 7.0 m for H, 6.75 for Kpγ(e), 95kN/m2 for q, 6.67 for Kpq(e), 30kN/m2 for c, 4.33 for Kpc(e), and 20° for δ in Equation (1).

Ppe=[12(18)(72)(6.75)+95(7)(6.67)+2(30)(7)(4.33)]1cos20°=9,823kN/m

Thus, the magnitude of the passive force Ppe due to earthquake conditions is 9,823kN/m_.

Determine the unit weight of the passive force Ppe using the formula.

UnitweightofPpe=1cosδ[12γH2Kpγ(e)]

Substitute 20° for δ, 18kN/m3 for γ, 7.0 m for H, and 6.75 for Kpγ(e).

UnitweightofPpe=1cos20°[12(18)(7)2(6.75)]=3,168kN/m

Determine the distance of passive earth force acting above the bottom of the wall using the relation.

Distance=H3

Substitute 7.0 m for H.

Distance=7.03=2.33m

Determine the weight of surcharge component using the formula.

Unitweightofsurcharge=1cosδ[qHKpq(e)]

Substitute 20° for δ, 95kN/m2 for q, 7.0 m for H, and 6.67 for Kpq(e).

Unitweightofsurcharge=1cos20°[95(7.0)(6.67)]=4,720kN/m

Determine the distance of surcharge component acting above the bottom of the wall using the relation.

Distance=H2

Substitute 7.0 m for H.

Distance=7.02=3.5m

Determine the unit weight of the cohesion component using the formula.

Unitweightofcohesioncomponent=1cosδ[2cHKpc(e)]

Substitute 20° for δ, 30kN/m2 for c, 7.0 m for H, and 4.33 for Kpc(e).

Unitweightofcohesioncomponent=1cos20°[2(30)(7)(4.33)]=1,935kN/m

Determine the distance of cohesion component acting above the bottom of the wall using the relation.

Distance=H2

Substitute 7.0 m for H.

Distance=7.02=3.5m

Determine the location of the resultant measured from the bottom of the wall using the formula.

z¯=UnitweightofPpe×Distance+(Unitweightofsurcharge+cohesion)(distance)Ppe

Substitute 3,168kN/m for unit weight of Ppe, 2.33 m for distance, 4,720kN/m for unit weight of surcharge, for unit weight of cohesion, 3.5 m for distance, and 9,823kN/m for Ppe.

z¯=3,168×2.33+(4,720+1,935)(3.5)9,823=3.12m

Thus, the location of the resultant measured from the bottom of the wall is 3.12m_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A retaining wall 6 m high with a vertical back face has c'- ϕ' soil for backfill. For the backfill, γ = 18.1 kN/m^3, c' = 29 kN/m^2, and ϕ' = 18˚. Taking the existence of the tensile crack into consideration, a. determine the active force, Pa, per unit length of the wall for Rankine’s active state. b. determine the passive force, Pp, per unit length for Rankine's passive state.
A 6m retaining wall is supporting a soil with the following properties:Unit weight = 16 KN/cu.mAngle of internal friction = 25ºCohesion = 14 Kpaa. Assuming no tensile cracks occurs in the soil; determine its normal pressure acting at the back of the wall.b. If tensile crack occurs in the soil, calculate its active pressure acting on the wall.c. Find the location of tensile crack measured from the surface of horizontal backfill.
11.7 A retaining wall is shown in Figure 11.22. Determine the Rankine active force, Pa, per unit length of the wall and the location of the resultant for each of the following cases: a. H = 12 ft, H, = 4 ft, y, = 105 lb/ft, y= b. H = 20 ft, H, = 6 ft, y, = 110 lb/ft, y = 126 lb/ft', oi = 34°, d; = 34°, q = 300 lb/ft 122 Ib/ft', i = 30°, = 30°, q = 0 6 Cengage Learning. All Riphts Reserved. May not be copied, scanned, or duplicated, in whole or in part Due to elsctronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). s deemed that any suppressed content does nol maierially affect the overall learning exnerience Ceneaec ernin neerves the right to mrmove additional.contant
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning