Calculus
7th Edition
ISBN: 9781524916817
Author: SMITH KARL J, STRAUSS MONTY J, TODA MAGDALENA DANIELE
Publisher: Kendall Hunt Publishing
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.7, Problem 32PS
To determine
To calculate: The value of the surface integral
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
B1.
Advance maths
2. Let S denote the piece of parabolic surface x2 + y? = z, 0 < z < 4. For the vector
field
F(x, y, z) = (y + xy, xz, z).
calculate the integral
(V x F) · n
dA
where the unit vector n is chosen so that its z component is positive.
3.1. Consider the vector field F(x, y, z) = (2yz, y sin z, 1+ cos z).
(a) Find a vector field G whose curl is F.
(b) Let S be the half-ellipsoid 4x² + 4y² + z² = 4, z ≥ 0, oriented by the upward normal.
Use Stokes's theorem to find ffs F. ds.
-
(c) Find fF.dS if S is the portion of the surface z = 1 – x² − y² above the xy-plane,
oriented by the upward normal. (Hint: Take advantage of what you've already done.)
Chapter 13 Solutions
Calculus
Ch. 13.1 - Prob. 1PSCh. 13.1 - Prob. 2PSCh. 13.1 - Prob. 3PSCh. 13.1 - Prob. 4PSCh. 13.1 - Prob. 5PSCh. 13.1 - Prob. 6PSCh. 13.1 - Prob. 7PSCh. 13.1 - Prob. 8PSCh. 13.1 - Prob. 9PSCh. 13.1 - Prob. 10PS
Ch. 13.1 - Prob. 11PSCh. 13.1 - Prob. 12PSCh. 13.1 - Prob. 13PSCh. 13.1 - Prob. 14PSCh. 13.1 - Prob. 15PSCh. 13.1 - Prob. 16PSCh. 13.1 - Prob. 17PSCh. 13.1 - Prob. 18PSCh. 13.1 - Prob. 19PSCh. 13.1 - Prob. 20PSCh. 13.1 - Prob. 21PSCh. 13.1 - Prob. 22PSCh. 13.1 - Prob. 23PSCh. 13.1 - Prob. 24PSCh. 13.1 - Prob. 25PSCh. 13.1 - Prob. 26PSCh. 13.1 - Prob. 27PSCh. 13.1 - Prob. 28PSCh. 13.1 - Prob. 29PSCh. 13.1 - Prob. 30PSCh. 13.1 - Prob. 31PSCh. 13.1 - Prob. 32PSCh. 13.1 - Prob. 33PSCh. 13.1 - Prob. 34PSCh. 13.1 - Prob. 35PSCh. 13.1 - Prob. 36PSCh. 13.1 - Prob. 37PSCh. 13.1 - Prob. 38PSCh. 13.1 - Prob. 39PSCh. 13.1 - Prob. 40PSCh. 13.1 - Prob. 41PSCh. 13.1 - Prob. 42PSCh. 13.1 - Prob. 43PSCh. 13.1 - Prob. 44PSCh. 13.1 - Prob. 45PSCh. 13.1 - Prob. 46PSCh. 13.1 - Prob. 47PSCh. 13.1 - Prob. 48PSCh. 13.1 - Prob. 49PSCh. 13.1 - Prob. 50PSCh. 13.1 - Prob. 51PSCh. 13.1 - Prob. 52PSCh. 13.1 - Prob. 53PSCh. 13.1 - Prob. 54PSCh. 13.1 - Prob. 55PSCh. 13.1 - Prob. 56PSCh. 13.1 - Prob. 57PSCh. 13.1 - Prob. 58PSCh. 13.1 - Prob. 59PSCh. 13.1 - Prob. 60PSCh. 13.2 - Prob. 1PSCh. 13.2 - Prob. 2PSCh. 13.2 - Prob. 3PSCh. 13.2 - Prob. 4PSCh. 13.2 - Prob. 5PSCh. 13.2 - Prob. 6PSCh. 13.2 - Prob. 7PSCh. 13.2 - Prob. 8PSCh. 13.2 - Prob. 9PSCh. 13.2 - Prob. 10PSCh. 13.2 - Prob. 11PSCh. 13.2 - Prob. 12PSCh. 13.2 - Prob. 13PSCh. 13.2 - Prob. 14PSCh. 13.2 - Prob. 15PSCh. 13.2 - Prob. 16PSCh. 13.2 - Prob. 17PSCh. 13.2 - Prob. 18PSCh. 13.2 - Prob. 19PSCh. 13.2 - Prob. 20PSCh. 13.2 - Prob. 21PSCh. 13.2 - Prob. 22PSCh. 13.2 - Prob. 23PSCh. 13.2 - Prob. 24PSCh. 13.2 - Prob. 25PSCh. 13.2 - Prob. 26PSCh. 13.2 - Prob. 27PSCh. 13.2 - Prob. 28PSCh. 13.2 - Prob. 29PSCh. 13.2 - Prob. 30PSCh. 13.2 - Prob. 31PSCh. 13.2 - Prob. 32PSCh. 13.2 - Prob. 33PSCh. 13.2 - Prob. 34PSCh. 13.2 - Prob. 35PSCh. 13.2 - Prob. 36PSCh. 13.2 - Prob. 37PSCh. 13.2 - Prob. 38PSCh. 13.2 - Prob. 39PSCh. 13.2 - Prob. 40PSCh. 13.2 - Prob. 41PSCh. 13.2 - Prob. 42PSCh. 13.2 - Prob. 43PSCh. 13.2 - Prob. 44PSCh. 13.2 - Prob. 45PSCh. 13.2 - Prob. 46PSCh. 13.2 - Prob. 47PSCh. 13.2 - Prob. 48PSCh. 13.2 - Prob. 49PSCh. 13.2 - Prob. 50PSCh. 13.2 - Prob. 51PSCh. 13.2 - Prob. 52PSCh. 13.2 - Prob. 53PSCh. 13.2 - Prob. 54PSCh. 13.2 - Prob. 55PSCh. 13.2 - Prob. 56PSCh. 13.2 - Prob. 57PSCh. 13.2 - Prob. 58PSCh. 13.2 - Prob. 59PSCh. 13.2 - Prob. 60PSCh. 13.3 - Prob. 1PSCh. 13.3 - Prob. 2PSCh. 13.3 - Prob. 3PSCh. 13.3 - Prob. 4PSCh. 13.3 - Prob. 5PSCh. 13.3 - Prob. 6PSCh. 13.3 - Prob. 7PSCh. 13.3 - Prob. 8PSCh. 13.3 - Prob. 9PSCh. 13.3 - Prob. 10PSCh. 13.3 - Prob. 11PSCh. 13.3 - Prob. 12PSCh. 13.3 - Prob. 13PSCh. 13.3 - Prob. 14PSCh. 13.3 - Prob. 15PSCh. 13.3 - Prob. 16PSCh. 13.3 - Prob. 17PSCh. 13.3 - Prob. 18PSCh. 13.3 - Prob. 19PSCh. 13.3 - Prob. 20PSCh. 13.3 - Prob. 21PSCh. 13.3 - Prob. 22PSCh. 13.3 - Prob. 23PSCh. 13.3 - Prob. 24PSCh. 13.3 - Prob. 25PSCh. 13.3 - Prob. 26PSCh. 13.3 - Prob. 27PSCh. 13.3 - Prob. 28PSCh. 13.3 - Prob. 29PSCh. 13.3 - Prob. 30PSCh. 13.3 - Prob. 31PSCh. 13.3 - Prob. 32PSCh. 13.3 - Prob. 33PSCh. 13.3 - Prob. 34PSCh. 13.3 - Prob. 35PSCh. 13.3 - Prob. 36PSCh. 13.3 - Prob. 37PSCh. 13.3 - Prob. 38PSCh. 13.3 - Prob. 39PSCh. 13.3 - Prob. 40PSCh. 13.3 - Prob. 41PSCh. 13.3 - Prob. 42PSCh. 13.3 - Prob. 43PSCh. 13.3 - Prob. 44PSCh. 13.3 - Prob. 45PSCh. 13.3 - Prob. 46PSCh. 13.3 - Prob. 47PSCh. 13.3 - Prob. 48PSCh. 13.3 - Prob. 49PSCh. 13.3 - Prob. 50PSCh. 13.3 - Prob. 51PSCh. 13.3 - Prob. 52PSCh. 13.3 - Prob. 53PSCh. 13.3 - Prob. 54PSCh. 13.3 - Prob. 55PSCh. 13.3 - Prob. 56PSCh. 13.3 - Prob. 57PSCh. 13.3 - Prob. 58PSCh. 13.3 - Prob. 59PSCh. 13.3 - Prob. 60PSCh. 13.4 - Prob. 1PSCh. 13.4 - Prob. 2PSCh. 13.4 - Prob. 3PSCh. 13.4 - Prob. 4PSCh. 13.4 - Prob. 5PSCh. 13.4 - Prob. 6PSCh. 13.4 - Prob. 7PSCh. 13.4 - Prob. 8PSCh. 13.4 - Prob. 9PSCh. 13.4 - Prob. 10PSCh. 13.4 - Prob. 11PSCh. 13.4 - Prob. 12PSCh. 13.4 - Prob. 13PSCh. 13.4 - Prob. 14PSCh. 13.4 - Prob. 15PSCh. 13.4 - Prob. 16PSCh. 13.4 - Prob. 17PSCh. 13.4 - Prob. 18PSCh. 13.4 - Prob. 19PSCh. 13.4 - Prob. 20PSCh. 13.4 - Prob. 21PSCh. 13.4 - Prob. 22PSCh. 13.4 - Prob. 23PSCh. 13.4 - Prob. 24PSCh. 13.4 - Prob. 25PSCh. 13.4 - Prob. 26PSCh. 13.4 - Prob. 27PSCh. 13.4 - Prob. 28PSCh. 13.4 - Prob. 29PSCh. 13.4 - Prob. 30PSCh. 13.4 - Prob. 31PSCh. 13.4 - Prob. 32PSCh. 13.4 - Prob. 33PSCh. 13.4 - Prob. 34PSCh. 13.4 - Prob. 35PSCh. 13.4 - Prob. 36PSCh. 13.4 - Prob. 37PSCh. 13.4 - Prob. 38PSCh. 13.4 - Prob. 39PSCh. 13.4 - Prob. 40PSCh. 13.4 - Prob. 41PSCh. 13.4 - Prob. 42PSCh. 13.4 - Prob. 43PSCh. 13.4 - Prob. 44PSCh. 13.4 - Prob. 45PSCh. 13.4 - Prob. 46PSCh. 13.4 - Prob. 47PSCh. 13.4 - Prob. 48PSCh. 13.4 - Prob. 49PSCh. 13.4 - Prob. 50PSCh. 13.4 - Prob. 51PSCh. 13.4 - Prob. 52PSCh. 13.4 - Prob. 53PSCh. 13.4 - Prob. 54PSCh. 13.4 - Prob. 55PSCh. 13.4 - Prob. 56PSCh. 13.4 - Prob. 57PSCh. 13.4 - Prob. 58PSCh. 13.4 - Prob. 59PSCh. 13.4 - Prob. 60PSCh. 13.5 - Prob. 1PSCh. 13.5 - Prob. 2PSCh. 13.5 - Prob. 3PSCh. 13.5 - Prob. 4PSCh. 13.5 - Prob. 5PSCh. 13.5 - Prob. 6PSCh. 13.5 - Prob. 7PSCh. 13.5 - Prob. 8PSCh. 13.5 - Prob. 9PSCh. 13.5 - Prob. 10PSCh. 13.5 - Prob. 11PSCh. 13.5 - Prob. 12PSCh. 13.5 - Prob. 13PSCh. 13.5 - Prob. 14PSCh. 13.5 - Prob. 15PSCh. 13.5 - Prob. 16PSCh. 13.5 - Prob. 17PSCh. 13.5 - Prob. 18PSCh. 13.5 - Prob. 19PSCh. 13.5 - Prob. 20PSCh. 13.5 - Prob. 21PSCh. 13.5 - Prob. 22PSCh. 13.5 - Prob. 23PSCh. 13.5 - Prob. 24PSCh. 13.5 - Prob. 25PSCh. 13.5 - Prob. 26PSCh. 13.5 - Prob. 27PSCh. 13.5 - Prob. 28PSCh. 13.5 - Prob. 29PSCh. 13.5 - Prob. 30PSCh. 13.5 - Prob. 31PSCh. 13.5 - Prob. 32PSCh. 13.5 - Prob. 33PSCh. 13.5 - Prob. 34PSCh. 13.5 - Prob. 35PSCh. 13.5 - Prob. 36PSCh. 13.5 - Prob. 37PSCh. 13.5 - Prob. 38PSCh. 13.5 - Prob. 39PSCh. 13.5 - Prob. 40PSCh. 13.5 - Prob. 41PSCh. 13.5 - Prob. 42PSCh. 13.5 - Prob. 43PSCh. 13.5 - Prob. 44PSCh. 13.5 - Prob. 45PSCh. 13.5 - Prob. 46PSCh. 13.5 - Prob. 47PSCh. 13.5 - Prob. 48PSCh. 13.5 - Prob. 49PSCh. 13.5 - Prob. 50PSCh. 13.5 - Prob. 51PSCh. 13.5 - Prob. 52PSCh. 13.5 - Prob. 53PSCh. 13.5 - Prob. 54PSCh. 13.5 - Prob. 55PSCh. 13.5 - Prob. 56PSCh. 13.5 - Prob. 57PSCh. 13.5 - Prob. 58PSCh. 13.5 - Prob. 59PSCh. 13.5 - Prob. 60PSCh. 13.6 - Prob. 1PSCh. 13.6 - Prob. 2PSCh. 13.6 - Prob. 3PSCh. 13.6 - Prob. 4PSCh. 13.6 - Prob. 5PSCh. 13.6 - Prob. 6PSCh. 13.6 - Prob. 7PSCh. 13.6 - Prob. 8PSCh. 13.6 - Prob. 9PSCh. 13.6 - Prob. 10PSCh. 13.6 - Prob. 11PSCh. 13.6 - Prob. 12PSCh. 13.6 - Prob. 13PSCh. 13.6 - Prob. 14PSCh. 13.6 - Prob. 15PSCh. 13.6 - Prob. 16PSCh. 13.6 - Prob. 17PSCh. 13.6 - Prob. 18PSCh. 13.6 - Prob. 19PSCh. 13.6 - Prob. 20PSCh. 13.6 - Prob. 21PSCh. 13.6 - Prob. 22PSCh. 13.6 - Prob. 23PSCh. 13.6 - Prob. 24PSCh. 13.6 - Prob. 25PSCh. 13.6 - Prob. 26PSCh. 13.6 - Prob. 27PSCh. 13.6 - Prob. 28PSCh. 13.6 - Prob. 29PSCh. 13.6 - Prob. 30PSCh. 13.6 - Prob. 31PSCh. 13.6 - Prob. 32PSCh. 13.6 - Prob. 33PSCh. 13.6 - Prob. 34PSCh. 13.6 - Prob. 35PSCh. 13.6 - Prob. 36PSCh. 13.6 - Prob. 37PSCh. 13.6 - Prob. 38PSCh. 13.6 - Prob. 39PSCh. 13.6 - Prob. 40PSCh. 13.6 - Prob. 41PSCh. 13.6 - Prob. 42PSCh. 13.6 - Prob. 43PSCh. 13.6 - Prob. 44PSCh. 13.6 - Prob. 45PSCh. 13.6 - Prob. 46PSCh. 13.6 - Prob. 47PSCh. 13.6 - Prob. 48PSCh. 13.6 - Prob. 49PSCh. 13.6 - Prob. 50PSCh. 13.6 - Prob. 51PSCh. 13.6 - Prob. 52PSCh. 13.6 - Prob. 53PSCh. 13.6 - Prob. 54PSCh. 13.6 - Prob. 55PSCh. 13.6 - Prob. 56PSCh. 13.6 - Prob. 57PSCh. 13.6 - Prob. 58PSCh. 13.6 - Prob. 59PSCh. 13.6 - Prob. 60PSCh. 13.7 - Prob. 1PSCh. 13.7 - Prob. 2PSCh. 13.7 - Prob. 3PSCh. 13.7 - Prob. 4PSCh. 13.7 - Prob. 5PSCh. 13.7 - Prob. 6PSCh. 13.7 - Prob. 7PSCh. 13.7 - Prob. 8PSCh. 13.7 - Prob. 9PSCh. 13.7 - Prob. 10PSCh. 13.7 - Prob. 11PSCh. 13.7 - Prob. 12PSCh. 13.7 - Prob. 13PSCh. 13.7 - Prob. 14PSCh. 13.7 - Prob. 15PSCh. 13.7 - Prob. 16PSCh. 13.7 - Prob. 17PSCh. 13.7 - Prob. 18PSCh. 13.7 - Prob. 19PSCh. 13.7 - Prob. 20PSCh. 13.7 - Prob. 21PSCh. 13.7 - Prob. 22PSCh. 13.7 - Prob. 23PSCh. 13.7 - Prob. 24PSCh. 13.7 - Prob. 25PSCh. 13.7 - Prob. 26PSCh. 13.7 - Prob. 27PSCh. 13.7 - Prob. 28PSCh. 13.7 - Prob. 29PSCh. 13.7 - Prob. 30PSCh. 13.7 - Prob. 31PSCh. 13.7 - Prob. 32PSCh. 13.7 - Prob. 33PSCh. 13.7 - Prob. 34PSCh. 13.7 - Prob. 35PSCh. 13.7 - Prob. 36PSCh. 13.7 - Prob. 37PSCh. 13.7 - Prob. 38PSCh. 13.7 - Prob. 39PSCh. 13.7 - Prob. 40PSCh. 13.7 - Prob. 41PSCh. 13.7 - Prob. 42PSCh. 13.7 - Prob. 43PSCh. 13.7 - Prob. 44PSCh. 13.7 - Prob. 45PSCh. 13.7 - Prob. 46PSCh. 13.7 - Prob. 47PSCh. 13.7 - Prob. 48PSCh. 13.7 - Prob. 49PSCh. 13.7 - Prob. 50PSCh. 13.7 - Prob. 51PSCh. 13.7 - Prob. 52PSCh. 13.7 - Prob. 53PSCh. 13.7 - Prob. 54PSCh. 13.7 - Prob. 55PSCh. 13.7 - Prob. 56PSCh. 13.7 - Prob. 57PSCh. 13.7 - Prob. 58PSCh. 13.7 - Prob. 59PSCh. 13.7 - Prob. 60PSCh. 13 - Prob. 1PECh. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Prob. 5PECh. 13 - Prob. 6PECh. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Prob. 10PECh. 13 - Prob. 11PECh. 13 - Prob. 12PECh. 13 - Prob. 13PECh. 13 - Prob. 14PECh. 13 - Prob. 15PECh. 13 - Prob. 16PECh. 13 - Prob. 17PECh. 13 - Prob. 18PECh. 13 - Prob. 19PECh. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - Prob. 22PECh. 13 - Prob. 23PECh. 13 - Prob. 24PECh. 13 - Prob. 25PECh. 13 - Prob. 26PECh. 13 - Prob. 27PECh. 13 - Prob. 28PECh. 13 - Prob. 29PECh. 13 - Prob. 30PECh. 13 - Prob. 1SPCh. 13 - Prob. 2SPCh. 13 - Prob. 3SPCh. 13 - Prob. 4SPCh. 13 - Prob. 5SPCh. 13 - Prob. 6SPCh. 13 - Prob. 7SPCh. 13 - Prob. 8SPCh. 13 - Prob. 9SPCh. 13 - Prob. 10SPCh. 13 - Prob. 11SPCh. 13 - Prob. 12SPCh. 13 - Prob. 13SPCh. 13 - Prob. 14SPCh. 13 - Prob. 15SPCh. 13 - Prob. 16SPCh. 13 - Prob. 17SPCh. 13 - Prob. 18SPCh. 13 - Prob. 19SPCh. 13 - Prob. 20SPCh. 13 - Prob. 21SPCh. 13 - Prob. 22SPCh. 13 - Prob. 23SPCh. 13 - Prob. 24SPCh. 13 - Prob. 25SPCh. 13 - Prob. 26SPCh. 13 - Prob. 27SPCh. 13 - Prob. 28SPCh. 13 - Prob. 29SPCh. 13 - Prob. 30SPCh. 13 - Prob. 31SPCh. 13 - Prob. 32SPCh. 13 - Prob. 33SPCh. 13 - Prob. 34SPCh. 13 - Prob. 35SPCh. 13 - Prob. 36SPCh. 13 - Prob. 37SPCh. 13 - Prob. 38SPCh. 13 - Prob. 39SPCh. 13 - Prob. 40SPCh. 13 - Prob. 41SPCh. 13 - Prob. 42SPCh. 13 - Prob. 43SPCh. 13 - Prob. 44SPCh. 13 - Prob. 45SPCh. 13 - Prob. 46SPCh. 13 - Prob. 47SPCh. 13 - Prob. 48SPCh. 13 - Prob. 49SPCh. 13 - Prob. 50SPCh. 13 - Prob. 51SPCh. 13 - Prob. 52SPCh. 13 - Prob. 53SPCh. 13 - Prob. 54SPCh. 13 - Prob. 55SPCh. 13 - Prob. 56SPCh. 13 - Prob. 57SPCh. 13 - Prob. 58SPCh. 13 - Prob. 59SPCh. 13 - Prob. 60SPCh. 13 - Prob. 61SPCh. 13 - Prob. 62SPCh. 13 - Prob. 63SPCh. 13 - Prob. 64SPCh. 13 - Prob. 65SPCh. 13 - Prob. 66SPCh. 13 - Prob. 67SPCh. 13 - Prob. 68SPCh. 13 - Prob. 69SPCh. 13 - Prob. 70SPCh. 13 - Prob. 71SPCh. 13 - Prob. 72SPCh. 13 - Prob. 73SPCh. 13 - Prob. 74SPCh. 13 - Prob. 75SPCh. 13 - Prob. 76SPCh. 13 - Prob. 77SPCh. 13 - Prob. 78SPCh. 13 - Prob. 79SPCh. 13 - Prob. 80SPCh. 13 - Prob. 81SPCh. 13 - Prob. 82SPCh. 13 - Prob. 83SPCh. 13 - Prob. 84SPCh. 13 - Prob. 85SPCh. 13 - Prob. 86SPCh. 13 - Prob. 87SPCh. 13 - Prob. 88SPCh. 13 - Prob. 89SPCh. 13 - Prob. 90SPCh. 13 - Prob. 91SPCh. 13 - Prob. 92SPCh. 13 - Prob. 93SPCh. 13 - Prob. 94SPCh. 13 - Prob. 95SPCh. 13 - Prob. 96SPCh. 13 - Prob. 97SPCh. 13 - Prob. 98SPCh. 13 - Prob. 99SPCh. 13 - Prob. 1CRPCh. 13 - Prob. 2CRPCh. 13 - Prob. 3CRPCh. 13 - Prob. 4CRPCh. 13 - Prob. 5CRPCh. 13 - Prob. 6CRPCh. 13 - Prob. 7CRPCh. 13 - Prob. 8CRPCh. 13 - Prob. 9CRPCh. 13 - Prob. 10CRPCh. 13 - Prob. 11CRPCh. 13 - Prob. 12CRPCh. 13 - Prob. 13CRPCh. 13 - Prob. 14CRPCh. 13 - Prob. 15CRPCh. 13 - Prob. 16CRPCh. 13 - Prob. 17CRPCh. 13 - Prob. 18CRPCh. 13 - Prob. 19CRPCh. 13 - Prob. 20CRPCh. 13 - Prob. 21CRPCh. 13 - Prob. 22CRPCh. 13 - Prob. 23CRPCh. 13 - Prob. 24CRPCh. 13 - Prob. 25CRPCh. 13 - Prob. 26CRPCh. 13 - Prob. 27CRPCh. 13 - Prob. 28CRPCh. 13 - Prob. 29CRPCh. 13 - Prob. 30CRPCh. 13 - Prob. 31CRPCh. 13 - Prob. 32CRPCh. 13 - Prob. 33CRPCh. 13 - Prob. 34CRPCh. 13 - Prob. 35CRPCh. 13 - Prob. 36CRPCh. 13 - Prob. 37CRPCh. 13 - Prob. 38CRPCh. 13 - Prob. 39CRPCh. 13 - Prob. 40CRPCh. 13 - Prob. 41CRPCh. 13 - Prob. 42CRPCh. 13 - Prob. 43CRPCh. 13 - Prob. 44CRPCh. 13 - Prob. 45CRPCh. 13 - Prob. 46CRPCh. 13 - Prob. 47CRPCh. 13 - Prob. 48CRPCh. 13 - Prob. 49CRPCh. 13 - Prob. 50CRPCh. 13 - Prob. 51CRPCh. 13 - Prob. 52CRPCh. 13 - Prob. 53CRPCh. 13 - Prob. 54CRPCh. 13 - Prob. 55CRPCh. 13 - Prob. 56CRPCh. 13 - Prob. 57CRPCh. 13 - Prob. 58CRPCh. 13 - Prob. 59CRPCh. 13 - Prob. 60CRP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 2. Let vector field F=(xz, -y,z) and surface, S is a cylinder x² + y² =4 for 3sz≤0 with the outward pointing normal vector. Use Stokes' Theorem to evaluate curl F.ds.arrow_forwardPlease help wth the following questions. They are in the photo.arrow_forward6. Suppose the surface S is given by the part of the paraboloid z = x² + y² that lies inside the cylinder x² + y² = 1, with unit normal vector pointing upward. Using Stokes' Theorem, evaluate the integral for the vector field JJ S F(x, y, z) = (y²z)i + (xz)j + (x²y²) k. (V x F).dSarrow_forward
- P.nilarrow_forward1. Let F = -yi + xj and let C be the unit circle oriented counterclockwise. (a) Show that F has a constant magnitude of 1 on C. (b) Show that F is always tangent to the circle C. (c) Show that F - dr =length of C. (d) Without calculating the curl, determine whether F is path-independent. Explain your reasoning. 2. Consider the vector field F(x, y) = evi+ (xe" + e²)j + ye*k. %3D (a) Show that F is conservative by determining a function f such that F = Vf. (b) Find a parameterization of C, the line segment from (0, 2, 0) to (4, 0, 3). (c) Set up the line integral f. F - dr, where C is the line segment from (0, 2, 0) to (4,0, 3). (d) Evaluate fe F - dr using whatever method you think is best. 3. Let i = V(r? + y?). Consider the path C which is a line between any two of the following points: (0,0), (-5,0), (0, 6), (0, –6), (5,4), (-3, –5). Suppose you want to choose the path C in order to maximize ở - dr. What point should be the start of C? What point should be the end of C? Explain your…arrow_forwardEvaluate the integral curves for the vector field F(x, y) =i – 4xy²j. %3D 2y О a. - 4у — х2 = C 4x2y2 Ob. -4y2 – x = C 4x2y c. -4y2 + x = C 4xy2 O d. -4y + x = C 4x2yarrow_forward
- 3. Let S be the portion of the plane z = 10-x-4y above the unit square in quadrant 1. Assume that the normal vectors to the surface have the standard positive outward/upward orientation. If the vector field is given by F= , then directly evaluate the flux integral n dS. Explain why Gauss's Divergence Thm is not applicablearrow_forwardIncorrect. Use a computer or calculator with Euler's method to approximate the flow line through (1, 2) for the vector field v = y² i +1.1x² j using 5 steps with At = 0.1. Find the exact values of x1, ... , x5 and y1, ... , y5 and then fill in the blanks rounding your numbers to three decimal places. X1 = !Yı = i X2 i 1.2 , y2 3.273 X3 = i 1.3 Y3 = i 4.50283 X4 i 1.4 6.7162 X5 = i 1.5 Y5 = i 11.4427 eTextbook and Media Assistance Used Hint Assistance Used The vector field is given by v = y i + 1.1x² j , that is, the flow line (x (t), y (t)) satisfies x' (t) = y² y' (t) = 1.1x².arrow_forwardEvaluate the line integral f. F. n ds, where the vector field F(r, y) = (tan- (4) + æ? , æ²y) and C is the circle a? + y? = 4. n is the outward unit normal vector to the circle. 3 3 O 47arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY