Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.5, Problem 13P
Find the steady-state distribution of temperature in the sector of a circular plate of radius 10 and angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Module Code: MATH380202
3. (a) Let {} be a white noise process with variance σ2.
Define an ARMA(p,q) process {X} in terms of {+} and state (without proof)
conditions for {X} to be (i) weakly stationary and (ii) invertible.
Define what is meant by an ARIMA (p, d, q) process. Let {Y} be such an ARIMA(p, d, q)
process and show how it can also be represented as an ARMA process, giving the
AR and MA orders of this representation.
(b) The following tables show the first nine sample autocorrelations and partial auto-
correlations of X and Y₁ = VX+ for a series of n = 1095 observations. (Notice
that the notation in this part has no relationship with the notation in part (a) of
this question.)
Identify a model for this time series and obtain preliminary estimates for the pa-
rameters of your model.
X₁
= 15.51, s² = 317.43.
k
1
2
3
4
5
6
7
Pk
0.981
0.974
0.968
akk 0.981 0.327
8
9
0.927
0.963 0.957 0.951 0.943 0.935
0.121 0.104 0.000 0.014 -0.067 -0.068 -0.012
Y₁ = VX : y = 0.03, s² = 11.48.
k
1…
Let G be a graph with n ≥ 2 vertices x1, x2, . . . , xn, and let A be the adjacency matrixof G. Prove that if G is connected, then every entry in the matrix A^n−1 + A^nis positive.
Module Code: MATH380202
1. (a) Define the terms "strongly stationary" and "weakly stationary".
Let {X} be a stochastic process defined for all t € Z. Assuming that {X+} is
weakly stationary, define the autocorrelation function (acf) Pk, for lag k.
What conditions must a process {X+) satisfy for it to be white noise?
(b) Let N(0, 1) for t€ Z, with the {+} being mutually independent. Which of
the following processes {X+} are weakly stationary for t> 0? Briefly justify your
answers.
i. Xt for all > 0.
ii. Xo~N(0,) and X₁ = 2X+-1+ &t for t > 0.
(c) Provide an expression for estimating the autocovariance function for a sample
X1,..., X believed to be from a weakly stationary process. How is the autocor-
relation function Pk then estimated, and a correlogram (or acf plot) constructed?
(d) Consider the weakly stationary stochastic process ✗+ = + + +-1+ +-2 where
{E} is a white noise process with variance 1. Compute the population autocorre-
lation function Pk for all k = 0, 1, ....
Chapter 13 Solutions
Mathematical Methods in the Physical Sciences
Ch. 13.1 - Assume from electrostatics the equations E=/0 and...Ch. 13.1 - Show that the expression u=sin(xvt) describing a...Ch. 13.1 - Assume from electrodynamics the following...Ch. 13.1 - Obtain the heat flow equation (1.3) as follows:...Ch. 13.2 - After you find the series solution of a problem,...Ch. 13.2 - T=0,0x10,100,10x20. Solve the semi-infinite plate...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Show that the solutions of (2.5) can also be...Ch. 13.2 - Show that the series in (2.12) can be summed to...
Ch. 13.2 - Solve Problem 3 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Solve Problem 2 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the temperature distribution in a rectangular...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - In the rectangular plate problem, we have so far...Ch. 13.2 - Consider a finite plate, 10cm by 30cm, with two...Ch. 13.2 - Show that there is only one function u which...Ch. 13.3 - Verify the coefficients in equation (3.14).Ch. 13.3 - A bar 10 cm long with insulated sides is initially...Ch. 13.3 - In the initial steady state of an infinite slab of...Ch. 13.3 - At t=0, two flat slabs each 5cm thick, one at 0...Ch. 13.3 - Prob. 5PCh. 13.3 - Show that the following problem is easily solved...Ch. 13.3 - A bar of length l with insulated sides has its...Ch. 13.3 - A bar of length 2 is initially at 0. From t=0 on,...Ch. 13.3 - Solve Problem 8 if, for t0, the x=0 end of the bar...Ch. 13.3 - Separate the wave equation (1.4) into a space...Ch. 13.3 - Solve the particle in a box problem to find (x,t)...Ch. 13.3 - Do Problem 11 if (x,0)=sin2x on (0,1).Ch. 13.4 - Complete the plucked string problem to get...Ch. 13.4 - A string of length l has a zero initial velocity...Ch. 13.4 - Solve Problem 2 if the initial displacement is:Ch. 13.4 - Solve Problem 2 if the initial displacement is :Ch. 13.4 - A string of length l is initially stretched...Ch. 13.4 - Do Problem 5 if the initial velocity V(x)=(y/t)t=0...Ch. 13.4 - Solve Problem 5 if the initial velocity is:Ch. 13.4 - Solve Problem 5 if the initial velocity is...Ch. 13.4 - In each of the Problems 1 to 8,find the frequency...Ch. 13.4 - Verify that, if k=nT, then the sum of the two...Ch. 13.4 - Verify (4.16) and find a similar formula for a...Ch. 13.4 - In Sections 2, 3, 4, we have solved a number of...Ch. 13.4 - Do Problem 12 for f(x)=1cos2x on (0,).Ch. 13.4 - Do Problem 12 for f(x)=xx3 on (0, 1).Ch. 13.5 - Compute numerically the coefficients (5.16) of the...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - A flat circular plate of radius a is initially at...Ch. 13.5 - Do Problem 4 if the initial temperature...Ch. 13.5 - Consider Problem 4 if the initial temperature...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Water at 100 is flowing through a long pipe of...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - A cube is originally at 100. From t=0 on, the...Ch. 13.5 - The following two R(r) equations arise in various...Ch. 13.5 - Separate Laplaces equation in two dimensions in...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - Find the steady state temperature distribution in...Ch. 13.5 - Solve Problem 14 if the temperatures of the two...Ch. 13.6 - Continue Figure 6.1 to show the fundamental modes...Ch. 13.6 - Prob. 2PCh. 13.6 - Separate the wave equation in two-dimensional...Ch. 13.6 - Find the characteristic frequencies for sound...Ch. 13.6 - A square membrane of side l is distorted into the...Ch. 13.6 - Let V=0 in the Schrödinger equation (3.22) and...Ch. 13.6 - In your Problem 6 solutions, find some examples of...Ch. 13.6 - Do Problem 6 in polar coordinates to find the...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Do Problem 11 if the curved surface is held at...Ch. 13.7 - Find the electrostatic potential outside a...Ch. 13.7 - Find the steady-state temperature distribution in...Ch. 13.7 - A sphere initially at 0 has its surface kept at...Ch. 13.7 - Separate the wave equation in spherical...Ch. 13.7 - Do Problem 6.6 in 3 dimensional rectangular...Ch. 13.7 - Prob. 18PCh. 13.7 - Find the eigenfunctions and energy eigenvalues for...Ch. 13.7 - Write the Schrödinger equation (3.22) if is a...Ch. 13.7 - Prob. 21PCh. 13.7 - Find the energy eigenvalues and eigen functions...Ch. 13.8 - Show that the gravitational potential V=Gm/r...Ch. 13.8 - Using the formulas of Chapter 12, Section 5, sum...Ch. 13.8 - Do the problem in Example 1 for the case of a...Ch. 13.8 - Prob. 4PCh. 13.8 - Find the method of images for problem 4.Ch. 13.8 - Substitute (8.25) into (8.22) and use (8.23) and...Ch. 13.8 - Verify that the Green function in (8.29) is zero...Ch. 13.8 - Show that the Green function (8.28) which is zero...Ch. 13.8 - Show that our results can be extended to find the...Ch. 13.9 - Verify that (9.15) follows from (9.14). Hint: Use...Ch. 13.9 - A metal plate covering the first quadrant has the...Ch. 13.9 - Consider the heat flow problem of Section 3. Solve...Ch. 13.9 - A semi-infinite bar is initially at temperature...Ch. 13.9 - Prob. 5PCh. 13.9 - Continue the problem of Example 2 in the following...Ch. 13.9 - Continue with Problem 4 as in Problem 6.Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - Solve Problem 1 if T=0 for x=0,x=1,y=0, and T=1x...Ch. 13.10 - Solve Problem 1 if the sides x=0 and x=1 are...Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - A bar of length l is initially at 0. From t=0 on,...Ch. 13.10 - Do Problem 5 if the x=0 end is insulated and the...Ch. 13.10 - Solve Problem 2 if the sides x=0 and x=1 are...Ch. 13.10 - A slab of thickness 10cm has its two faces at 10...Ch. 13.10 - A string of length l has initial displacement...Ch. 13.10 - Solve Problem 5.7 if half the curved surface of...Ch. 13.10 - The series in Problem 5.12 can be summed (see...Ch. 13.10 - A plate in the shape of a quarter circle has...Ch. 13.10 - Sum the series in Problem 12 to get...Ch. 13.10 - A long cylinder has been cut into quarter...Ch. 13.10 - Repeat Problems 12 and 13 for a plate in the shape...Ch. 13.10 - Consider the normal modes of vibration for a...Ch. 13.10 - Sketch some of the normal modes of vibration for a...Ch. 13.10 - Repeat Problem 17 for a membrane in the shape of a...Ch. 13.10 - Prob. 19MPCh. 13.10 - Use Problem 7.16 to find the characteristic...Ch. 13.10 - The surface temperature of a sphere of radius 1 is...Ch. 13.10 - Find the interior temperature in a hemisphere if...Ch. 13.10 - Find the steady-state temperature in the region...Ch. 13.10 - Find the general solution for the steady-state...Ch. 13.10 - The Klein-Gordon equation is 2u=1/v22u/t2+2u. This...Ch. 13.10 - Prob. 26MPCh. 13.10 - Do Problem 26 for a rectangular membrane.Ch. 13.10 - Find the steady-state temperature in a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
The following set of data is from sample of n=5: a. Compute the mean, median, and mode. b. Compute the range, v...
Basic Business Statistics, Student Value Edition
The following data were given in a study of a group of 1000 subscribers to a certain magazine: In reference to ...
A First Course in Probability (10th Edition)
1. If X is correlated with Y,
a. X causes Y.
b. increasing values of X go with increasing values of Y.
c. incr...
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Fill in each blanks so that the resulting statement is true. Any set of ordered pairs is called a/an _______. T...
College Algebra (7th Edition)
Write the bases, faces, edges and vertices of given figure.
Pre-Algebra Student Edition
If n is a counting number, bn, read______, indicates that there are n factors of b. The number b is called the_...
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- iii) i=5 x² = Σ i=1 (Yi — mi)² σ 2 By minimising oc², derive the formulae for the best values of the model for a 1 degree polynomial (2 parameters).arrow_forwardиз Review the deck below and determine its total square footage (add its deck and backsplash square footage together to get the result). Type your answer in the entry box and click Submit. 126 1/2" 5" backsplash A 158" CL 79" B 26" Type your answer here.arrow_forwardRefer to page 311 for a sequence of functions defined on a given interval. Instructions: • Analyze whether the sequence converges pointwise and/or uniformly on the given interval. • Discuss the implications of uniform convergence for integration and differentiation of the sequence. • Provide counterexamples if any condition fails. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 310 for a matrix and its associated system of differential equations. Instructions: • Find the eigenvalues of the given matrix and classify the stability of the system (e.g., stable, • unstable, saddle point). Discuss the geometric interpretation of eigenvalues in the context of system behavior. • Provide conditions under which the system exhibits periodic solutions. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 313 for a nonlinear differential equation and its linear approximation. Instructions: • Linearize the given nonlinear system around the equilibrium points. • Analyze the stability of each equilibrium using the Jacobian matrix and its eigenvalues. • Discuss the limitations of linearization for determining global behavior. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 314 for a matrix and its decomposed form. Instructions: • Verify the given singular value decomposition of the matrix. • • Discuss the geometric interpretation of the left and right singular vectors. Use the SVD to analyze the matrix's rank and nullity. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZ F/view?usp=sharing]arrow_forward
- Refer to page 312 for a set of mappings between two groups G and H. Instructions: • • Verify which of the provided mappings are homomorphisms. Determine the kernel and image of valid homomorphisms and discuss their properties. • State whether the groups are isomorphic, justifying your conclusion. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forward12:25 AM Sun Dec 22 uestion 6- Week 8: QuX Assume that a company X + → C ezto.mheducation.com Week 8: Quiz i Saved 6 4 points Help Save & Exit Submit Assume that a company is considering purchasing a machine for $50,000 that will have a five-year useful life and a $5,000 salvage value. The machine will lower operating costs by $17,000 per year. The company's required rate of return is 15%. The net present value of this investment is closest to: Click here to view Exhibit 12B-1 and Exhibit 12B-2, to determine the appropriate discount factor(s) using the tables provided. 00:33:45 Multiple Choice О $6,984. $11,859. $22,919. ○ $9,469, Mc Graw Hill 2 100-arrow_forwardNo chatgpt pls will upvotearrow_forward
- 7. [10 marks] Let G = (V,E) be a 3-connected graph. We prove that for every x, y, z Є V, there is a cycle in G on which x, y, and z all lie. (a) First prove that there are two internally disjoint xy-paths Po and P₁. (b) If z is on either Po or P₁, then combining Po and P₁ produces a cycle on which x, y, and z all lie. So assume that z is not on Po and not on P₁. Now prove that there are three paths Qo, Q1, and Q2 such that: ⚫each Qi starts at z; • each Qi ends at a vertex w; that is on Po or on P₁, where wo, w₁, and w₂ are distinct; the paths Qo, Q1, Q2 are disjoint from each other (except at the start vertex 2) and are disjoint from the paths Po and P₁ (except at the end vertices wo, W1, and w₂). (c) Use paths Po, P₁, Qo, Q1, and Q2 to prove that there is a cycle on which x, y, and z all lie. (To do this, notice that two of the w; must be on the same Pj.)arrow_forward6. [10 marks] Let T be a tree with n ≥ 2 vertices and leaves. Let BL(T) denote the block graph of T. (a) How many vertices does BL(T) have? (b) How many edges does BL(T) have? Prove that your answers are correct.arrow_forward4. [10 marks] Find both a matching of maximum size and a vertex cover of minimum size in the following bipartite graph. Prove that your answer is correct. ย ພarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Polar Coordinates Basic Introduction, Conversion to Rectangular, How to Plot Points, Negative R Valu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=aSdaT62ndYE;License: Standard YouTube License, CC-BY