Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 50P
The volumetric analysis of a mixture of gases is 30 percent oxygen, 40 percent nitrogen, 10 percent carbon dioxide, and 20 percent methane. This mixture is heated from 20°C to 200°C while flowing through a tube in which the pressure is maintained at 150 kPa. Determine the heat transfer to the mixture per unit mass of the mixture.
FIGURE P13–52
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
0.5 kg of Helium and 0.5 kg of nitrogen are mixed at 20°C and at a total pressure of 100 kPa.
Find (a) the volume of the mixture (b) the partial volumes of the components (c) the partial
pressures of the components (d) the mole fraction of the components (e) the specific heats cp
and c, of the mixture and (f) the gas constant of the mixture.
If the quality of a liquid-vapor mixture is 0.8 and the total mass of the mixture is 18 kg,
what is the mass of liquid in the mixture?
A 0.3-m3 rigid tank contains 0.6 kg of N2 and 0.4 kg of O2 at 300 K. Determine the partial pressure of each gas and the total pressure of the mixture
Chapter 13 Solutions
Thermodynamics: An Engineering Approach
Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 6PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - Prob. 11PCh. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 18PCh. 13.3 - Prob. 19PCh. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - Prob. 26PCh. 13.3 - Prob. 27PCh. 13.3 - Prob. 28PCh. 13.3 - 13–29 A gas mixture at 350 K and 300 kPa has the...Ch. 13.3 - Prob. 30PCh. 13.3 - Prob. 31PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 33PCh. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - Prob. 36PCh. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 38PCh. 13.3 - Prob. 39PCh. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - Prob. 42PCh. 13.3 - Prob. 43PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 45PCh. 13.3 - Prob. 46PCh. 13.3 - 13–47C Is the total internal energy change of an...Ch. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - Prob. 52PCh. 13.3 - Prob. 53PCh. 13.3 - Prob. 54PCh. 13.3 - Prob. 55PCh. 13.3 - Prob. 56PCh. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - Prob. 59PCh. 13.3 - Prob. 60PCh. 13.3 - Prob. 61PCh. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 64PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 69PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 71PCh. 13.3 - Prob. 72PCh. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 80PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Prob. 83PCh. 13.3 - Prob. 84RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - Prob. 89RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 94RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - 13–102 An ideal-gas mixture consists of 2 kmol of...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 104FEPCh. 13.3 - Prob. 105FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 107FEPCh. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A mixture of gases is assembled by first filling an evacuated 0.39-m3 tank with neon until the pressure is 35 kPa. Oxygen is added next until the pressure increases to 105 kPa. Finally, nitrogen is added until the pressure increases to 140 kPa. During each step of the tank’s filling, the contents are maintained at 60°C. Determine the mass of each constituent in the resulting mixture. The mass of neon is kg. The mass of oxygen is kg. The mass of nitrogen is kg.arrow_forwardA steam supply at 1.5MP is formed from a mixture of steam at 1.5MPA and dryness fraction 0.9 and steam at 1.5MPA and temperature 210°C in the ratio 1:2 by mass. The mixture is then throttled down to a pressure of 0.28MPa. Determine a-the density of the mixture before throttling b-the temperature of steam after throttling. Take the specific heat of superheated steam as 2kJ/kg K. (7.79kg/m², 15. 141.5°C)arrow_forwardThe mass fractions of a mixture of gases are 10 percent nitrogen, 3 percent helium, 55 percent methane, and 32 percent ethane. Determine the mole fractions of each constituent, the mixture’s apparent molecular weight, the partial pressure of each constituent when the mixture pressure is 1200 kPa, and the apparent specific heats of the mixture when the mixture is at the room temperature. The universal gas constant is Ru = 8.314 kJ/kmol·K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. The mole fraction of nitrogen is _______. The mole fraction of helium is _____. The mole fraction of methane is ._______ The mole fraction of ethane is ______. The apparent molecular weight of the mixture is ______kg/kmol. The partial pressure of nitrogen is ______kPa. The partial pressure of helium is _____kPa. The partial pressure of methane is _____kPa. The partial…arrow_forward
- Ten pounds of water at 35oF, and 6.00 lb of steam at 250oF and 20 psia are mixed together in a container of fixed volume. What is the final temperature of the mixture? How much steam condense? Assume that the volume of the vessel is constant with a value equal to the volume of the steam and that the vessel is insulated.arrow_forwardA cylinder contains a mixture of air and wet steam at a pressure of 130kN/m2 and a temperature of 760 C. The dryness fraction of the steam is 0.92. The air – steam mixture is then compressed to one-fifth of its original volume the final temperature being 1250 C. Determine: a) The final pressure in the cylinder b) The final dryness fraction of the steam. Note: I need both right solutions.arrow_forwardWhat is the temperature (deg C) of a liquid-vapor mixture subjected to a pressure of 200 kPa with x=0.7?arrow_forward
- Gaseous hydrogen weakens the mechanical strength of cast iron. this phenomenon often occurs in cast iron pressure vessels containing 100% gas hydrogen. H2 gas dissolves in metallic iron and diffuses into solid non-porous iron by an interstitial diffusion mechanism. H2 gas does not need to penetrate far into the iron to have a negative effect on the mechanical strength of iron. In the present situation, 100% of H2 gas at 1.0 atm and 100°C is contained within a 1.0 m internal diameter and wall thickness of 2.0 cm. The solubility of hydrogen in iron in 100°C is 2.2x10-7 mol of H/g Fe atoms. The diffusion coefficient of atoms of hydrogen in solid iron is 124.0x10-9 cm2 /sec at 100°C. Initially, there are no H atoms in solid iron. How many hours will it take for the hydrogen level inside the iron metal reaches 1.76x10-7 mol H atoms/g Fe at a depth of 0.1 cm from the surface exposed to hydrogen gas?arrow_forwardA 5.00-g sample of aluminum pellets (specific heat capacity = 0.89 J/°C • g) and a 10.00-g sample of iron pellets (specific heat capacity = 45 J/°C • g) are heated to 100.0° The mixture of hot iron and aluminum is then dropped into 97.3 g water at 22.0°C. Calculate the final temperature of the metal and water mixture, assuming no heat loss to the surroundings.arrow_forwardA mixture of 5 kg of Hydrogen and 26 kg of Nitrogen are contained in a piston cylinder assembly at a pressure of 6.78 MPa and a temperature of 125 K. heat is transferred to the device and the mixture expands at a constant pressure until the temperature rises to 135 K. Determine the heat transfer in kJ during the process by treating the mixture as a non-ideal gas and using the Amagat's law.arrow_forward
- The dryness degree of the water in the saturated liquid-steam mixture at 90 ° C in a 5 liter container is 0.5. How many grams is the mass of water in this container?arrow_forward30 m³ of air at 15°C DBT and 0.827 m³/kg specific volume are mixed with 12-m3 of air at 25°C DBT and 0.96 m³/kg specific volume. The dry bulb temperature (DBT) of resulting mixture is "C. (Correct up to 2 decimal places)arrow_forwardNot Ai generated, please show all steps The volumetric analysis of a mixture of gases is 30 percent oxygen, 40 percent nitrogen, 10 percent carbon diox-ide, and 20 percent methane. This mixture flows through a 1-in-diameter pipe at 1500 psia and 70°F with a velocity of 10 ft/s. Determine the volumetric and mass flow rates of this mixture (a) treating it as an ideal-gas mixture, (b) using a compressibility factor based on Amagat's law of additive volumes, and (c) using Kay's pseudocritical pressure and temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY