
Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.2, Problem 13.104P
To determine
(a)
Increase in velocity required at A.
To determine
(b)
Increase in velocity required at B.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(b): Let us first consider controlling the orbit of deputy spacecraft to rendezvous with chief spacecraft.
Define x = [r] and x = x = R to represent the deputy orbital state and its target (= chief
orbit) in Cartesian coordinates, respectively. The control input is thruster acceleration, u € R³, in the
ECI frame. Denote the relative state by dx = x-x. Table 2 summarize the initial orbital elements.
Table 2: Keplerian orbital elements at epoch (t = 0) for deputy and chief about Earth (ECI frame)
Orbital element
Deputy
Unit
Chief
semi-major axis
ad =
11500
ac 10000 km
eccentricity
inclination
ed = 0.15
id=35
ee = 0.3
i = 50
degree
right ascension of ascending node d = 50
Ως = 50
degree
argument of periapsis
true anomaly at epoch
Wd
Vd= 0
=
40
We =
40
degree
Ve=0
degree
(b.1): Derive the error dynamics of our system in ECI frame under the influence of u.
(b.2): Consider a candidate Lyapunov function V = ½dr¹ K₁dr+dv₁dv, where K₁ = K, and K, > 0.
Discuss the positive definiteness of V, and…
One image show problem c.1 and c.2 that I need help with. The second image shows the lyapunov function and its derivative but it is NOT the same function that is given in problem. I have attached that image as an example.
This is a tilt and rotation question. Here are notes attached for reference.
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - A 1-Ib stone is dropped down the “bottomless pit”...Ch. 13.1 - A baseball player hits a 5.1-oz baseball with an...Ch. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - In an ore-mixing operation, a bucket full of ore...Ch. 13.1 - Determine the maximum theoretical speed the may be...Ch. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - A package is projected up a 15° incline at A with...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Blocks A and B weigh 25 Ib and 10 Ib,...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 3-kg packages are held in place by friction...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A piston of mass m and cross-sectional area A is...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 4-Ib collar can slide without friciton along a...Ch. 13.2 - A 4-Ib collar can slide without friction along a...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - A 2-kg collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - Prob. 13.70PCh. 13.2 - Prob. 13.71PCh. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is released from rest at A and...Ch. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The system shown is at rest when a constant 150-N...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 25-ton railroad car moving at 2.5 mi/h is to be...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - A 1-az bullet is traveling with velocity of 1400...Ch. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Prob. 13.155PCh. 13.4 - Collars A and B, of the same mass m, are moving...Ch. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - A 32,000-Ib airplane lands on an aircraft carrier...Ch. 13 - A 2-oz pellet shot vertically from a spring-loaded...Ch. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 300-g collar A is released from rest, slids down...Ch. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The crate of mass m is supported on a cart of negligible mass as shown in (Figure 1). Determine the maximum force P that can be applied a distance d from the cart bottom without causing the crate to tip on the cart. Express your answer in terms of some, all, or none of the variables b, d, h, m, and the acceleration due to gravity g. P B harrow_forwardConsider a pair of pipes running in parallel, through which 1200 GPM flows, which have thefollowing features:Pipe 1: Carbon Steel, Schedule 40, 8" Diameter, 1200 GPM, Water at 44°F, Fittings:2 tees, 2 butterfly valves, 2 pressure gauges with their respective ball valves, 1 valvemotorized balloon. All valves are completely open. Length of the pipe is 6 feet. Pipe 2: consists of a carbon steel bypass pipe, schedule 40, diameter of 4",with the following accessories: 2 elbows long radius of 90° and an open globe valve.The length of the pipe is 10 feet. a) Determine the flow rate in each pipe.b) The pressure drop.arrow_forward1-ft3 of air is contained in a spring-loaded piston-cylinder device. The spring constant is 6 lbf/in, and thepiston diameter is 12 in. When no force is exerted by the spring on the piston, the state of the air is 250 psiaand 450◦F. This device is now cooled until the volume is one-third its original size. Determine the changein the specific internal energy and enthalpy of the air.arrow_forward
- This is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forwardI need help with a MATLAB code. For question b.6 I have the MATLAB code shown below. How do I edit the code to answer question b.7. Please make sure the plots are reasonable. clc; clear all; % Constants mu = 398600; % Earth gravitational parameter, km^3/s^2 % Initial chief and deputy positions and velocities in ECI frame % Assume circular orbits in equatorial plane for simplicity a_c = 10000; % km a_d = 11500; % km r_c0 = [a_c; 0; 0]; v_c0 = [0; sqrt(mu/a_c); 0]; r_d0 = [a_d; 0; 0]; v_d0 = [0; sqrt(mu/a_d); 0]; % Initial relative state delta_r0 = r_d0 - r_c0; delta_v0 = v_d0 - v_c0; x0 = [delta_r0; delta_v0]; % 6x1 initial relative state % Time span tspan = [0 3600]; % 1 hour in seconds % Damping cases cases = struct( ... 'name', {'Critically damped', 'Under-damped', 'Over-damped'}, ... 'Kr', {eye(3)*2.5e-3, eye(3)*0.001, eye(3)*0.01}, ... 'P', {eye(3)*0.01, eye(3)*0.0006, eye(3)*0.02} ... ); % Simulate each case for i = 1:length(cases) Kr = cases(i).Kr; P =…arrow_forward
- Just do Questions 7, 9, 11. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes A spring-loaded piston-cylinder device contains 1.5 kg of carbon dioxide. This system is heated from 200kPa and 25◦C to 1200 kPa and 300◦C. Determine the total heat transfer to and work produced by this system.arrow_forward
- Can you help with a code in MATLAB?arrow_forwardI need help writing a code in MATLAB. Please help me with question b.6arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes 1.5-kg of water that is initially at 90◦C with a quality of 5 percent occupies a spring-loaded piston-cylinder device. This device is now heated until the pressure rises to 900 kPa and the temperature is 280◦C. Determinethe total work produced during this process, in kJ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY