Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 79P
(a)
To determine
To show: The pressure and radius of the star at equilibrium are related by
(b)
To determine
To show: Using binomial expansion the right hand side of the equation can be written as
(c)
To determine
An expression for the period of oscillation of the star.
(d)
To determine
The period of the variable star Delta Cephei.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The planet Jupiter has a mass of 1.9 × 1027 kg and a radius of 72,000 km. The Earth, meanwhile, has a mass of 6.0 × 1024 kg and a radius of 6,400 km. What is the volume of Earth in m^3?
Here, (G = 6.67×10−11N m2/kg2) is the universal gravitational constant, (M) is the mass of the object,and (r) is its radius. For example, the mass of the Earth is (M = 6×1024kg) and the radius is (r = 6.4×106m). Thus, the surface gravity of Earth is:g=(6.67×10−11×6×1024(6.4×106)2)m/s2= 9.8 m/s2ObjectMassRadiusMercury3.3×1023kg2.4×106mVenus4.9×1024kg6.1×106mMars6.4×1023kg3.4×106mJupiter1.9×1027kg7.0×107mSaturn5.7×1026kg5.8×107mUranus8.7×1025kg2.5×107mNeptune1.0×1025kg2.5×107m
ProcedureFor each of the planets listed above, compute the surface gravity in m/s21
Calculate the magnitude of the gravitational attråct between the particle and
Neptune to three significant figures.
rauneliotw.actbarw en the pane ard
ficant figureS
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
x10
Chapter 13 Solutions
Essential University Physics (3rd Edition)
Ch. 13.1 - A typical human heart rate is about 65 beats per...Ch. 13.2 - Two identical mass-spring systems are displaced...Ch. 13.3 - What happens to the period of a pendulum if (l)...Ch. 13.4 - Figure 13.18 shows the paths traced in the...Ch. 13.5 - Two different mass-spring systems are oscillating...Ch. 13.6 - The figure shows displacement-versus-time graphs...Ch. 13.7 - The photo shows a wineglass shattering in response...Ch. 13 - Is a vertically bouncing ball an example of...Ch. 13 - The vibration frequencies of molecules are much...Ch. 13 - What happens to the frequency of a simple harmonic...
Ch. 13 - If the spring of a simple harmonic oscillator is...Ch. 13 - How does the frequency of a simple harmonic...Ch. 13 - How would the frequency of a horizontal massspring...Ch. 13 - When in its cycle is the acceleration of an...Ch. 13 - Explain how simple harmonic motion might be used...Ch. 13 - One pendulum consists of a solid rod of mass m and...Ch. 13 - The x- and y-components of motion of a body are...Ch. 13 - Why is critical damping desirable in a cars...Ch. 13 - Explain why the frequency of a damped system is...Ch. 13 - Opera singers have been known to break glasses...Ch. 13 - What will happen to the period of a massspring...Ch. 13 - How can a system have more than one resonant...Ch. 13 - Prob. 16ECh. 13 - A violin string playing the note A oscillates at...Ch. 13 - The vibration frequency of a hydrogen chloride...Ch. 13 - Write expressions for the displacement x(t) in...Ch. 13 - The top of a skyscraper sways back and forth,...Ch. 13 - A hummingbirds wings vibrate at about 45 Hz. Whats...Ch. 13 - A 200-g mass is attached to a spring of constant k...Ch. 13 - An automobile suspension has an effective spring...Ch. 13 - The quartz crystal in a watch executes simple...Ch. 13 - A 342-g mass is attached to a spring and undergoes...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - How long should you make a simple pendulum so its...Ch. 13 - At the heart of a grandfather clock is a simple...Ch. 13 - A 622-g basketball with 24.0-cm diameter is...Ch. 13 - A meter stick is suspended from one end and set...Ch. 13 - A wheel rotates at 600 rpm. Viewed from the edge,...Ch. 13 - The x- and y-components of an objects motion are...Ch. 13 - A 450-g mass on a spring is oscillating at 1.2 Hz....Ch. 13 - A torsional oscillator of rotational inertia 1.6...Ch. 13 - Youre riding in a friends 1400-kg car with bad...Ch. 13 - The vibration of a piano string can be described...Ch. 13 - A massspring system has b/m = 0/5, where b is the...Ch. 13 - A cars front suspension has a natural frequency of...Ch. 13 - A simple model for carbon dioxide consists of...Ch. 13 - Two identical massspring systems consist of 430-g...Ch. 13 - The human eye and muscles that hold it can be...Ch. 13 - A mass m slides along a frictionless horizontal...Ch. 13 - Prob. 44PCh. 13 - A physics student, bored by a lecture on simple...Ch. 13 - A pendulum of length L is mounted in a rocket....Ch. 13 - The protein dynein powers the flagella that propel...Ch. 13 - A mass is attached to a vertical spring, which...Ch. 13 - Derive the period of a simple pendulum by...Ch. 13 - A solid disk of radius R is suspended from a...Ch. 13 - A thin steel beam is suspended from a crane and is...Ch. 13 - A cyclist turns her bicycle upside down to repair...Ch. 13 - An object undergoes simple harmonic motion in two...Ch. 13 - The muscles that drive insect wings minimize the...Ch. 13 - A pendulum consists of a 320-g solid ball 15.0 cm...Ch. 13 - If Jane and Tarzan are initially 8.0 m apart in...Ch. 13 - A small mass measuring device (SMMD) used for...Ch. 13 - A thin, uniform hoop of mass M and radius R is...Ch. 13 - A mass m is mounted between two springs with...Ch. 13 - The equation for an ellipse is (x2/a2) + (y2/b2) =...Ch. 13 - Show that the potential energy of a simple...Ch. 13 - The total energy of a massspring system is the sum...Ch. 13 - A solid cylinder of mass M and radius R is mounted...Ch. 13 - A mass m is free to slide on a frictionless track...Ch. 13 - A 250-g mass is mounted on a spring of constant k...Ch. 13 - A harmonic oscillator is underdamped if the...Ch. 13 - A massless spring with k = 74 N/m hangs from the...Ch. 13 - A meter stick is suspended from a frictionless rod...Ch. 13 - A particle of mass m has potential energy given by...Ch. 13 - Two balls with the same unknown mass m are mounted...Ch. 13 - Two mass-spring systems with the same mass are...Ch. 13 - Two mass-spring systems have the same mass and the...Ch. 13 - A 500-g mass is suspended from a thread 45 cm long...Ch. 13 - A 500-g block on a frictionless, horizontal...Ch. 13 - Repeat Problem 64 for a small solid ball of mass M...Ch. 13 - Youre working on the script of a movie whose plot...Ch. 13 - A 1.2-kg block rests on a frictionless surface and...Ch. 13 - A disk of radius R is suspended from a pivot...Ch. 13 - Prob. 79PCh. 13 - Youre a structural engineer working on a design...Ch. 13 - Show that x(t) = a cos t bsin t represents simple...Ch. 13 - Youre working for the summer with an ornithologist...Ch. 13 - While waiting for your plane to take off, you...Ch. 13 - Youre working for a playground equipment company,...Ch. 13 - Youve inherited your great-grandmothers mantle...Ch. 13 - This problem explores the nonlinear pendulum...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1×1021×102 suns and a radius equal to one-half the radius of our moon. A)What is the density of the black hole in g/cm3g/cm3? The radius of our sun is 7.0×105km7.0×105km, and it has an average density of 1.4×103kg/m31.4×103kg/m3. The diameter of the moon is 2.16×1032.16×103 miles. 1km=0.6214mile1km=0.6214mile.?arrow_forwardC01arrow_forwardReview Conceptual Example 3 for information pertinent to this problem. When we look at a particular star, we are seeing it as it was 121 years ago. How far away from us (in meters) is the star? Take a year to be 365.25 days. Number Units the tolerance is +/-2%arrow_forward
- The distance between two stars of masses 3M² and 6M, is 9R. Here R is the mean distance between the centers of the Earth and the Sun, and Mã is the mass of the Sun. The two stars orbit around their common center of mass in circular orbits with period nT, where T is the period of Earth's revolution around the Sun. The value of n isarrow_forwardThe mass of a planet is about 71% of the mass of Jupiter with the same radius. What is the approximate average density of the planet in g/cm3? The mass of Jupiter is 2 x1027kg and Jupiter's radius is 69000.0 km.arrow_forwardA submersible robot is exploring one of the methane seas on Titan, Saturn's largest moon. It discovers a number of small spherical structures on the bottom of the sea at depth of 10 meters [m], and selects one for analysis. The sphere selected has a volume of 1.9 cubic centimeters [cm3] and a density of 2.25 grams per cubic centimeter [g/cm3]. When the rock is returned to Earth for analysis, what is the weight of the sphere in newtons [N]? Gravity on Titan is 1.352 meters per second squared [m/s2]. The density of methane is 0.712 grams per liter [g/L] The weight of the sphere is ____ N.arrow_forward
- The specific gravity of honey is 1.45. A cylindrical container of honey 10 feet [ft] deep is inside a dome pressurized to a surface pressure of 0.06 atmospheres [atm] on the surface of Pluto. The total pressure at the bottom of the container is 66 millimeters of mercury [mm Hg]. What is the gravitational acceleration of Pluto, in units of meters per second squared m/s? Click the icon to view the conversion table. Click the icon to view density of water. .. .. The gravitational acceleration of Pluto is m/s. (Round your answer to two decimal places.)arrow_forwardA typical neutron star may have a mass equal to that of the Sun (m =1.99x10 30 kg) but a radius of only 10 km. a) What is the gravitational acceleration at the surface of such a star? b) How fast would an object be moving if it fell from rest through a distance of 1.0 m on such a star?arrow_forwardAn astronaut lands on a new, recently discovered planet in a different star system. The astronaut measures the acceleration due to gravity on the planet to be 12m/s2, and the mass of the planet is measured to be 7.5E23kg. What is the radius of the new planet?arrow_forward
- The sun produces energy via nuclear fusion at the rate of 4x10 J/s. Based on the proposed overall fusion equation, how long will the sun shine in years before it exhausts its hydrogen fuel? (Assume that there are 365 days in the average year.) Express your answer to one significant figure and include the appropriate units.arrow_forwardWhile looking through the Mt. Palomar telescope, you discover a large planetary object orbited by a single moon. The moon orbits the planet every 7.35 hours with the centers of the two objects separated by a distance roughly 2.25 times the radius of the planet. Fellow scientists speculate that the planet is made of mostly iron. In fact, the media has dubbed it the ''Iron Planet'' and NASA has even named it Planet Hephaestus after the Greek god of iron. But you have your doubts. Assuming the planet is spherical and the orbit circular, calculate the density of Planet Hephaestus.arrow_forwardSolar energy reached the earth at the rate of about 14000 W/m^2 of surface perpendicular to the direction of the sun. By how much does the mass of the sun decreases in each second? The mean radian of the earth's orbit is 1.5 x10^11m. The surface area of a sphere= 4πr²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning