University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 59AP
A neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?
NASA is expected to send a 2600-kg satellite 450 km above the earth’s surface. (a) What is its radius? (b) What speed will it have? (Hint: Earth’s mass is 5.97 x 1024 kg)
A planet has a mass of M1, a radius of R1, and a density of ρ1. A second planet has a mass of M2, a radius of R2, and a density of ρ2. This problem will explore the relationships between the surface gravities (g1 and g2) of the planets depending on the relative sizes of their masses, radii, and densities.
a) Assume that planet 2 has X times the mass of planet 1, or M2 = XM1. The densities of both planets are the same. Write an expression for the ratio of the surface gravity of planet 2 to planet 1 in terms of X.
b)Suppose now the radius of the second planet is Y times the size of the radius of the first planet, or R2 = YR1. Write an expression for the ratio of the surface gravities, g2/g1 in terms of Y assuming the densities are the same.
c) Suppose now M2 = 8M1 and ρ2 = 8ρ1. What is the ratio of g2/g1 now (here we want the actual number; because you are writing a ratio, the number will be unitless)?
d) Now suppose R2 = 10R1 and ρ2 = 10ρ1. Find the ratio of g2/g1 (again as a number…
Chapter 13 Solutions
University Physics Volume 1
Ch. 13 - Check Your Understanding What happens to force and...Ch. 13 - Check Your Understanding How does your weight at...Ch. 13 - Check Your Understanding Why not use the simpler...Ch. 13 - Check Your Understanding If we send a probe out of...Ch. 13 - Check Your Understanding Assume you are in a...Ch. 13 - Check Your Understanding By what factor must the...Ch. 13 - Check Your Understanding There is another...Ch. 13 - Check Your Understanding Galaxies are not single...Ch. 13 - Check Your Understanding The nearly circular orbit...Ch. 13 - Check Your Understanding Earth exerts a tidal...
Ch. 13 - Check Your Understanding Consider the density...Ch. 13 - Action at a distance, such as is the case for...Ch. 13 - In the law of universal gravitation, Newton...Ch. 13 - Must engineers take Earth’s rotation into account...Ch. 13 - It was stated that a satellite with negative total...Ch. 13 - It was shown that the energy required to lift a...Ch. 13 - One student argues that a satellite in orbit is in...Ch. 13 - Many satellites are placed in geosynchronous...Ch. 13 - Are Kepler’s laws purely descriptive, or do they...Ch. 13 - In the diagram below for a satellite in an...Ch. 13 - As an object falls into a black hole, tidal forces...Ch. 13 - The principle of equivalence states that all...Ch. 13 - As a person approaches the Schwarzschild radius fo...Ch. 13 - Evaluate the magnitude of gravitational force...Ch. 13 - Estimate the gravitational force between two sumo...Ch. 13 - Astrology makes much of the position of the...Ch. 13 - A mountain 10.0 km from a person exerts a...Ch. 13 - The International Space Station has a mass of...Ch. 13 - Asteroid Toutatis passed near Earth in 2006 at...Ch. 13 - (a) What was the acceleration of Earth caused by...Ch. 13 - (a) Calculate Earth’s mass given the acceleratioln...Ch. 13 - (a) What is the acceleration due to gravity on the...Ch. 13 - (a) Calculate the acceleration due to gravity on...Ch. 13 - The mass of a particle is 15 kg. (a) What is its...Ch. 13 - On a planet whose radius is 1.2107m , the...Ch. 13 - The mean diameter of the planet Saturn is 1.2108m...Ch. 13 - The mean diameter of the planet Mercury is...Ch. 13 - The acceleration due to gravity on the surface of...Ch. 13 - A body on the surface of a planet with the same...Ch. 13 - Find the escape speed of a projectile from the...Ch. 13 - Find the escape speed of a projectile from the...Ch. 13 - What is the escape speed of a satellite located at...Ch. 13 - (a) Evaluate the gravitational potential energy...Ch. 13 - An average-sized asteroid located 5.0107km from...Ch. 13 - (a) What will be the kinetic energy of the...Ch. 13 - (a) What is the change in energy of a 1000-kg...Ch. 13 - If a planet with 1.5 times the mass of Earth was...Ch. 13 - Two planets in circular orbits around a star have...Ch. 13 - Using the average distance of Earth from the Sun,...Ch. 13 - What is the orbital radius of an Earth satellite...Ch. 13 - Calculate the mass of the Sun based on data for...Ch. 13 - Find the mass of Jupiter based on the fact that I0...Ch. 13 - Astronomical observatrions of our Milky Way galaxy...Ch. 13 - (a) In order to keep a small satellite from...Ch. 13 - The Moon and Earth rotate about their common...Ch. 13 - The Sun orbits the Milky Way galaxy once each...Ch. 13 - A geosynchronous Earth satellite is one that has...Ch. 13 - Calculate the mass of the Sun based on data for...Ch. 13 - I0 orbits Jupiter with an average radius of...Ch. 13 - The “mean” orbital radius listed for astronomical...Ch. 13 - The perihelion of Halley’s comet is 0.586 AU and...Ch. 13 - The perihelion of the comet Legerkvist is 2.61 AU...Ch. 13 - What is the ratio of the speed at perihelion to...Ch. 13 - Eros has an elliptical orbit about the Sun, with a...Ch. 13 - What is the difference between the force on a...Ch. 13 - If the Sun were to collapse into a black hole, the...Ch. 13 - Consider Figure 13.23 in Tidal Forces. This...Ch. 13 - What is the Schwarzschild radius for the black...Ch. 13 - What would be the Schwarzschild radius, in light...Ch. 13 - A neutron star is a cold, collapsed star with...Ch. 13 - (a) How far from the center of Earth would the net...Ch. 13 - How far from the center of the Sun would the net...Ch. 13 - Calculate the values of g at Earth’s surface for...Ch. 13 - Suppose you can communicate with the inhabitants...Ch. 13 - (a) Suppose that your measured weight at the...Ch. 13 - A body of mass 100 kg is weighed at the North Pole...Ch. 13 - Find the speed needed to escape from the solar...Ch. 13 - Consider the previous problem and include the fact...Ch. 13 - A comet is observed 1.50 AU from the Sun with a...Ch. 13 - An asteroid has speed 15.5km/s when it is located...Ch. 13 - Space debris left from old satellites and their...Ch. 13 - A satellite of mass 1000 kg is in circular orbit...Ch. 13 - After Cares was promoted to a dwarf planet, we now...Ch. 13 - (a) Using the data in the previous problem for the...Ch. 13 - What is the orbital velocity of our solar system...Ch. 13 - (a) Using the information in the previous problem,...Ch. 13 - Circular orbits in Equation 13.10 for conic...Ch. 13 - Show that for eccentricity equal to one in...Ch. 13 - Using the technique shown in Satellite Orbits and...Ch. 13 - Given the perihelion distance, p , and aphelion...Ch. 13 - Comet P/1999 R1 has a perihelion of 0.0570 AU and...Ch. 13 - A tunnel is dug through the center of a perfectly...Ch. 13 - Following the technique used in Gravitation Near...Ch. 13 - Show that the areal velocity for a circular orbit...Ch. 13 - Show that the period of orbit for two masses, m1...Ch. 13 - Show that for small changes in height h, such that...Ch. 13 - Using Figure 13.9, carefull sketch a free body...Ch. 13 - (a) Show that tidal force on a small object of...Ch. 13 - Find the Hohmann transfer velocities,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
We know that falling on a mat is preferable to falling on a concrete floor. Explain why in terms of the impulse...
Conceptual Integrated Science
4. Accuracy is
the same as precision.
the smallest unit with which a measurement is made.
the number of signifi...
Applied Physics (11th Edition)
A thin plate has a round hole whose diameter in its rest frame is D. The plate is parallel to the ground and mo...
Modern Physics
In a physics classroom demonstration, an instructor inflates a balloon by mouth and then cools it in liquid nit...
University Physics Volume 2
Choose the best answer to each of the following. Explain your reasoning. What happen when a Proton collide with...
Cosmic Perspective Fundamentals
The radiation pressure exerted by the beam of light on the tooth.
Physics (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD 179949 (hence the term “hot Jupiter”). The orbit was just 1/9 the distance of Mercury from our sun, and it takes the planet only 3.09 days to make one orbit (assumed to be circular). (a) What is the mass of the star? Express your answer in kilograms and as a multiple of our sun’s mass. (b) How fast (in km>s) is this planet moving?arrow_forwardWhat would be the mass of Jupiter if it were composed entirely of hydrogen at a density of 0.08 kg/m³ (the density of hydrogen at sea level on Earth)?arrow_forwardThe mean diameters of planets A and B are 9.8 × 10³ km and 2.6 × 104 km, respectively. The ratio of the mass of planet A to that of planet B is 0.93. (a) What is the ratio of the mean density of A to that of B? (b) What is the ratio of the gravitational acceleration on A to that on B? (c) What is the ratio of escape speed on A to that on B? (a) Number (b) Number (c) Number i Units Units Unitsarrow_forward
- On the surface of a planet, you step on a bathroom scale and observe a reading of 180 N. You then board a de-elevator that goes to the center of the planet. On the way down, you stop, weigh yourself again and observe a reading of 50 N. How far below the planet's 'sea level' have you decended in km? Assume the planet radius and mass are 2370 km and 2.8 E23 kg, respectively.arrow_forwardAn object of mass m is launched from a planet of mass M and radius R. a)Derive and enter an expression for the minimum launch speed needed for the object to escape gravity, i.e. to be able to just reach r = ∞. b)Calculate this minimum launch speed (called the escape speed), in meters per second, for a planet of mass M = 6 × 1023 kg and R = 76 × 104 km.arrow_forwardThe asteroid 243 Ida has a mass of about 4.0×1016kg4.0×1016kg and an average radius of about 16 kmkm (it’s not spherical, but you can assume it is). What would an astronaut whose earth weight is 700 NN weigh on 243 Ida?If you can jump 52 cmcm straight up on earth, how high could you jump on 243 Ida? (Assume the asteroid’s gravity doesn’t weaken significantly over the distance of your jump.)arrow_forward
- After our Sun exhausts its nuclear fuel, its ultimate fate may be to collapse to a white dwarf state, in which it has approximately the same mass as it has now but a radius equal to roughly the size of the Earth's radius. (a) Calculate the average density of this white dwarf if the Sun were to collapse to a radius of 6.01 x 106m. kg/m³ (b) Calculate the free-fall acceleration at its surface. m/s? (c) Calculate the gravitational potential energy of a 1.00 kg object at its surface. (Take Ug = 0 at infinity.)arrow_forwardTwo Planets, A and B, are orbiting a common star. Planet A is twice as massive as planet B and orbits at twice the distance from the star. Planet A orbits the star with a 'year' that is 240 days long. Assuming that both planets have the same average density, how long (in days) is a year on planet B?arrow_forwardOne way astrophysicists have identifi ed “extrasolar” planets orbiting distant stars is by observing redshifts or blueshifts in the star’s spectrum due to the fact that he star and planet each revolve around their common center of mass. Consider a star the size of our sun (mass 1.99 x 1030 kg), with a planet the size of Jupiter(1.90 x 1027 kg) in a circular orbit of radius 7.79 x 1011 m and a period of 11.9 years. (a) Find the speed of the star revolving around the system’s center of mass. (b) Assume that Earth is in the planet’s orbital plane, so that at one point in its orbit the star is moving directly toward Earth, and at the opposite point it moves directly away from Earth. How much is 550-nm light redshifted and blueshifted at those two extreme points?arrow_forward
- A 2660-kg spacecraft is in a circular orbit 1540 km above the surface of Mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4500 km above the surface? Express your answer to three significant figures.arrow_forwardCalculate the escape velocity from the surface of a world with mass 7.40 x 10^24kg and radius 7.00 x 10^3arrow_forwardA typical neutron star may have a mass equal to that of the Sun but a radius of only 19 km. (a) What is the gravitational acceleration at the surface of such a star? (Enter the magnitude.) 3670000000000x m/s? (b) How fast would an object be moving if it fell from rest through a distance of 1.1 m on such a star? (Assume the star does not rotate.) m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning