(a)
The speed of flow of water in the pipe of radius
(a)
Answer to Problem 58P
Explanation of Solution
Given:
Length of conical section of pipe
Radius of cylindrical pipe on the left side of the conical section of pipe
Radius of cylindrical pipe on the right side of the conical section of pipe
Speed of water that flows in to the
Formula used:
FIGURE: 1
In the figure1,
Let
Now applying the continuity equation to the flow of water in the two sections of cylindrical pipes,
Area of cross section of cylindrical pipes is,
Applying this to the equation gives,
Calculation:
Substituting the numerical values in equation
Conclusion:
The speed of flow of water in the pipe of radius
(b)
The speed of flow of water at a position
(b)
Answer to Problem 58P
Explanation of Solution
Given:
Length of conical section of pipe
Radius of cylindrical pipe on the left side of the conical section of pipe
Radius of cylindrical pipe on the right side of the conical section of pipe
Speed of water that flows in to the
Formula used:
Now applying the continuity equation to the flow of water in the conical section of pipe,
The upper half of the conical section of pipe can be redrawn as shown in the figure 2.
FIGURE: 2
Now using the coordinates shown on the line in the figure 2, one can write the expression,
Where,
The expression for variation of cross-sectional area of conical section with
Substituting for
Substituting for
Since area of cross section
Calculation:
Substituting the numerical values in equation
Conclusion:
The speed of flow of water at a position
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers
- Fluid originally flows through a tube at a rate of 100 cm3/s. To illustrate the sensitivity of flow rate to various factors, calculate be new flow rate for following changes with all other factors remaining the same as in original conditions. (a) Pressure difference increases by a factor of 1.50. (b) A new fluid wit 3.00 times greater viscosity is substituted. (c) The tube is replaced by one having 4.00 times the length. (d) Another tube used with a 0.100 times the original. (e) Yet another tube is substituted with a radius 0.100 times the original and half length, and pressure difference is increased by factor of 1.50.arrow_forwardWhat is the pressure drop due to the Bernoulli Effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/s? (b) To what maximum above be nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)arrow_forwardA small artery has a length of 1.1103m and a radius of 2.55105m . If the pressure drop across the artery is 1.3 kPa, what is the flow rate through artery? (Assume Eat the temperature 37°C)arrow_forward
- Water emerges straight down from a faucet with a 1.80-cm diameter at a speed of 0.500 m/s. (Because of the construction of the faucet, there is no variation in speed across the stream.) (a) What is flow rate in cm3/s? (b) What is the diameter of the stream 0.200 m below the faucet? Neglect any effects due to surface tension.arrow_forwardWater is moving at a velocity of 2.00 m/s through a hose with internal diameter of 1.60 cm. (a) What is the flow rate in liters per second? (b) The fluid velocity in this hose's nozzle is 15.0 m/s. What is the nozzle's inside diameter?arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air an apparent mass of 0.0850 kg completely submerged with lungs empty. (a) What of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.7S L, is she able to that without treading water with her lungs filled air?arrow_forward
- An oil gusher shoots crude 25.0 m the through a pipe with a 0.100-m diameter. Neglecting resistance but not resistance of the pipe, and assuming laminar flow, calculate pressure at be entrance of be 50.0-m-Iong vertical pipe. Take of the oil to be 900 kg/m3 and its viscosity to be 100(N/m2) s (or 1.00 Pa s). Note that you must take into account the pressure due to 50.0-m column of oil in pipe.arrow_forwardWhat is the average flow rate in cm3/s of gasoline to the engine of a car traveling at 100 km/h if it averages 10.0 km/L?arrow_forwardConcrete is pumped from a cement mixer to the place it is being lad, instead of being carried wheelbarrows. The flow rate is 200 L/min through a 50.0-m-long, 8.00-cm-diameter hose, and he pressure it the pump is 8.00106 N/m2. (a) Calculate the resistance of the hose. (b) What is the viscosity of the concrete, assuming the flow is laminar? (c) How much power is being supplied, assuming the point of use is at the same level as the pump? You may neglect the power supplied to increase be concrete's velocity.arrow_forward
- If a person's body has a density of 995 kg/m3, what fraction of the body will be submerged when floating gently in (a) freshwater? (b) In salt water with a density of 1027 kg/m3?arrow_forwardSuppose you have a wind speed gauge like the pitot tube shown in Figure 14.32. By what factor must wad speed increase to double the value of h in the manometer? Is independent of be moving fluid and be fluid the Figure 14.32 Measurement of fluid speed on Bernoulli’s principle. (a) A manometer is connected to two tubes close together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2 has an opening on the side, so the fluid has a speed v across; thus, pressure there drops. The difference in pressure at the manometer is 12v22 , so h is proportional to . 12v22 (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot tube.arrow_forwardA fire hose has an inside diameter of 6.40 cm. Suppose such a hose caries a flow of 40.0 L/s starting at a gauge pressure of 1.62106 N/m2. The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Calculate the Reynolds numbers for flow in the fire hose and nozzle to show that flow in each must be turbulent.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill