EBK FOUNDATIONS OF COLLEGE CHEMISTRY
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
15th Edition
ISBN: 9781118930144
Author: Willard
Publisher: JOHN WILEY+SONS INC.
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 55AE
Interpretation Introduction

Interpretation:

Energy liberated for condensation of steam at 100 °C to liquid at 30 °C has to be calculated.

Concept Introduction:

Heat required by 1 g of a substance to increase the temperature by 1 °C is termed as specific heat capacity of that substance. Energy absorbed or released by the substance is calculated as follows:

  Energy=(mass)(specific heat)(change in temperature)

Heat of condensation is the quantity of heat released on condensation of a steam to liquid. Every substance has different heat of condensation. It is represented as ΔHv and calculated as follows:

  Energy=(mass)(ΔHv)

Expert Solution & Answer
Check Mark

Explanation of Solution

The formula to calculate mass of water is as follows:

  moles of H2O=mass of H2Omolar mass of H2O        (1)

Rearrange equation (1) for mass of H2O.

  mass of H2O=(moles of H2O)(molar mass of H2O)        (2)

Substitute 50 mol for moles of H2O and 18.015 g/mol for molar mass of H2O in equation (2).

  mass of H2O=(50 mol)(18.015 g/mol)=900.75 g

The formula to calculate energy of condensation of steam to water is as follows:

  E=mc(T2T1)        (1)

Here,

E is energy of water.

m is mass of water.

c is specific heat of water.

T2T1 is change in temperature.

Substitute 900.75 g for m, 4.184 J/g °C for c, 30 °C for T2 and 100 °C for T1 in equation (1).

  E=(900.75 g)(4.184 J/g °C)(30°C100°C)=(900.75 g)(4.184 J1 g °C)(70 °C)=263811.66 J

The formula to calculate energy releasedfrom steam to form liquid is as follows:

  q=mΔHv        (2)

Here,

q is the energy released by water to condense steam

m is the mass of steam

ΔHv is the heat of vaporization

Substitute 900.75 g for m and 2260 J/g for ΔHv in equation (2).

  q=(900.75 g)(2260 J1 g)=2035695 J

Total energy released for condensation of steam to water is as follows:

  Total energy=E+q        (3)

Substitute 263811.66 J for E and 2035695 J for q in equation (3).

  Total energy=263811.66 J2035695 J=2299506.66 J

Thus, energy liberated by steam to form liquid is 2299506.66 J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

EBK FOUNDATIONS OF COLLEGE CHEMISTRY

Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 26RQCh. 13 - Prob. 27RQCh. 13 - Prob. 28RQCh. 13 - Prob. 29RQCh. 13 - Prob. 30RQCh. 13 - Prob. 31RQCh. 13 - Prob. 32RQCh. 13 - Prob. 33RQCh. 13 - Prob. 34RQCh. 13 - Prob. 35RQCh. 13 - Prob. 36RQCh. 13 - Prob. 37RQCh. 13 - Prob. 38RQCh. 13 - Prob. 39RQCh. 13 - Prob. 40RQCh. 13 - Prob. 41RQCh. 13 - Prob. 42RQCh. 13 - Prob. 43RQCh. 13 - Prob. 1PECh. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Prob. 5PECh. 13 - Prob. 6PECh. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Prob. 10PECh. 13 - Prob. 11PECh. 13 - Prob. 12PECh. 13 - Prob. 13PECh. 13 - Prob. 14PECh. 13 - Prob. 15PECh. 13 - Prob. 16PECh. 13 - Prob. 17PECh. 13 - Prob. 18PECh. 13 - Prob. 19PECh. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - Prob. 22PECh. 13 - Prob. 23PECh. 13 - Prob. 24PECh. 13 - Prob. 25PECh. 13 - Prob. 26PECh. 13 - Prob. 27PECh. 13 - Prob. 28PECh. 13 - Prob. 29PECh. 13 - Prob. 30PECh. 13 - Prob. 31PECh. 13 - Prob. 32PECh. 13 - Prob. 33AECh. 13 - Prob. 34AECh. 13 - Prob. 35AECh. 13 - Prob. 36AECh. 13 - Prob. 38AECh. 13 - Prob. 39AECh. 13 - Prob. 40AECh. 13 - Prob. 41AECh. 13 - Prob. 42AECh. 13 - Prob. 43AECh. 13 - Prob. 44AECh. 13 - Prob. 45AECh. 13 - Prob. 46AECh. 13 - Prob. 47AECh. 13 - Prob. 48AECh. 13 - Prob. 49AECh. 13 - Prob. 50AECh. 13 - Prob. 51AECh. 13 - Prob. 52AECh. 13 - Prob. 53AECh. 13 - Prob. 54AECh. 13 - Prob. 55AECh. 13 - Prob. 56AECh. 13 - Prob. 57AECh. 13 - Prob. 58AECh. 13 - Prob. 59AECh. 13 - Prob. 60AECh. 13 - Prob. 61AECh. 13 - Prob. 62AECh. 13 - Prob. 63AECh. 13 - Prob. 64AECh. 13 - Prob. 65AECh. 13 - Prob. 66AECh. 13 - Prob. 67AECh. 13 - Prob. 69CECh. 13 - Prob. 70CECh. 13 - Prob. 71CECh. 13 - Prob. 72CE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY