Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 36P
(II) Archimedes’ principle can be used not only to determine the specific gravity of a solid using a known liquid (Example 13–10); the reverse can be done as well. (a) As an example, a 3.80-kg aluminum ball has an apparent mass of 2.10 kg when submerged in a particular liquid: calculate the density of the liquid. (b) Derive a formula for determining the density of a liquid using this procedure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 13.3 - Prob. 1AECh. 13.3 - A dam holds hack a lake that is 85 m deep at the...Ch. 13.7 - On the hydrometer of Example 1311, will the marks...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.9 - As water in a level pipe passes from a narrow...Ch. 13.10 - Return to Chapter-Opening Question 2, page 339,...Ch. 13 - If one material has a higher density than another,...Ch. 13 - Airplane travelers sometimes note that their...Ch. 13 - The three containers in Fig. 1343 are filled with...
Ch. 13 - Consider what happens when you push both a pin and...Ch. 13 - A small amount of water is boiled in a 1-gallon...Ch. 13 - Prob. 6QCh. 13 - An ice cube floats in a glass of water filled to...Ch. 13 - Will an ice cube float in a glass of alcohol? Why...Ch. 13 - A submerged can of Coke will sink, but a can of...Ch. 13 - Why dont ships made of iron sink?Ch. 13 - Explain how the tube in Fig. 1344, known as a...Ch. 13 - A barge filled high with sand approaches a low...Ch. 13 - Explain why helium weather balloons, which are...Ch. 13 - A row boat floats in a swimming pool, and the...Ch. 13 - Will an empty balloon have precisely the same...Ch. 13 - Why do you float higher in salt water than in...Ch. 13 - If you dangle two pieces of paper vertically, a...Ch. 13 - Why does the stream of water from a faucet...Ch. 13 - Prob. 19QCh. 13 - A tall Styrofoam cup is filled with water. Two...Ch. 13 - Why do airplanes normally lake off into the wind?Ch. 13 - Two ships moving in parallel paths close to one...Ch. 13 - Prob. 23QCh. 13 - Prob. 24QCh. 13 - (I) The approximate volume of the granite monolith...Ch. 13 - (I) What is the approximate mass of air in a...Ch. 13 - (I) If you tried to smuggle gold bricks by filling...Ch. 13 - (I) State your mass and then estimate your volume....Ch. 13 - (II) A bottle has a mass of 35.00g when empty and...Ch. 13 - (II) If 5.0L of antifreeze solution (specific...Ch. 13 - Prob. 7PCh. 13 - (I) Estimate the pressure needed to raise a column...Ch. 13 - (I) Estimate the pressure exerted on a floor by...Ch. 13 - (I) What is the difference in blood pressure...Ch. 13 - (II) How high would the level be in an alcohol...Ch. 13 - (II) In a movie, Tarzan evades his captors by...Ch. 13 - (II) The maximum gauge pressure in a hydraulic...Ch. 13 - (II) The gauge pressure in each of the four tires...Ch. 13 - (II) (a) Determine the total force and the...Ch. 13 - (II) A house at the bottom of a hill is fed by a...Ch. 13 - (II) Water anti then oil (which dont mix) are...Ch. 13 - (II) In working out his principle, Pascal showed...Ch. 13 - (II) What is the normal pressure of the atmosphere...Ch. 13 - (II) A hydraulic press for compacting powdered...Ch. 13 - (II) An open-tube mercury manometer is used to...Ch. 13 - (III) A beaker of liquid accelerates from rest, on...Ch. 13 - (III) Water stands at a height h behind a vertical...Ch. 13 - (III) Estimate the density of the water 5.4 km...Ch. 13 - (III) A cylindrical bucket of liquid (density ) is...Ch. 13 - (I) What fraction of a piece of iron will he...Ch. 13 - (I) A geologist finds that a Moon rock whose mass...Ch. 13 - (II) A crane lifts the 16,000-kg steel hull of a...Ch. 13 - (II) A spherical balloon has a radius of 7.35 m...Ch. 13 - (II) A 74-kg person has an apparent mass of 54 kg...Ch. 13 - (II) What is the likely identity of a metal (see...Ch. 13 - (II) Calculate the true mass (in vacuum) of a...Ch. 13 - Prob. 33PCh. 13 - (II) A scuba diver and her gear displace a volume...Ch. 13 - (II) The specific gravity of ice is 0.917, whereas...Ch. 13 - (II) Archimedes principle can be used not only to...Ch. 13 - (II) (a) Show that the buoyant force FB on a...Ch. 13 - (II) A cube of side length 10.0 cm and made of...Ch. 13 - (II) How many helium-filled balloons would it take...Ch. 13 - Prob. 40PCh. 13 - (III) If an object floats in water, its density...Ch. 13 - (III) A 3.25-kg piece of wood (SG = 0.50) floats...Ch. 13 - (I) A 15-cm-radius air duct is used to replenish...Ch. 13 - Prob. 44PCh. 13 - (I) How fast does water flow from a hole at the...Ch. 13 - (II) A fish tank has dimensions 36 cm wide by 1.0...Ch. 13 - (II) What gauge pressure in the water mains is...Ch. 13 - Prob. 48PCh. 13 - (II) A 180-km/h wind blowing over the flat roof of...Ch. 13 - (II) A 6.0-cm-diameter horizontal pipe gradually...Ch. 13 - (II) Estimate the air pressure inside a category 5...Ch. 13 - (II) What is the lift (in newtons) due to...Ch. 13 - (II) Show that the power needed to drive a fluid...Ch. 13 - (II) Water at a gauge pressure of 3.8 atm at...Ch. 13 - (II) In Fig. 1355, take into account the speed of...Ch. 13 - (II) Suppose the top surface of the vessel in Fig....Ch. 13 - (II) You are watering your lawn with a hose when...Ch. 13 - (III) Suppose the opening in the tank of Fig. 1355...Ch. 13 - Prob. 59PCh. 13 - (III) (a) Show that the flow speed measured by a...Ch. 13 - Prob. 61PCh. 13 - (III) A fire hose exerts a force on the person...Ch. 13 - (II) A viscometer consists of two concentric...Ch. 13 - Prob. 64PCh. 13 - (I) Engine oil (assume SAE 10, Table 133) passes...Ch. 13 - Prob. 66PCh. 13 - (II) What diameter must a 15.5-m-long air duct...Ch. 13 - (II) What must be the pressure difference between...Ch. 13 - (II) Poiseuilles equation does not hold if the...Ch. 13 - Prob. 70PCh. 13 - (III) A patient is to be given a blood...Ch. 13 - (I) If the force F needed to move the wire in Fig....Ch. 13 - (I) Calculate the force needed to move the wire in...Ch. 13 - (II) The surface tension of a liquid can be...Ch. 13 - (III) Estimate the diameter of a steel needle that...Ch. 13 - (III) Show that inside a soap bubble, there must...Ch. 13 - (III) A common effect of surface tension is the...Ch. 13 - A 2.8-N force is applied to the plunger of a...Ch. 13 - Intravenous infusions are often made under...Ch. 13 - A beaker of water rests on an electronic balance...Ch. 13 - Estimate the difference in air pressure between...Ch. 13 - A hydraulic lift is used to jack a 920-kg car 42...Ch. 13 - When you ascend or descend a great deal when...Ch. 13 - Giraffes are a wonder of cardiovascular...Ch. 13 - Suppose a person can reduce the pressure in his...Ch. 13 - Airlines are allowed to maintain a minimum air...Ch. 13 - A simple model (Fig. 13-57) considers a continent...Ch. 13 - A ship, carrying fresh water to a desert island in...Ch. 13 - During ascent, and especially during descent,...Ch. 13 - A raft is made of 12 logs lashed together. Each is...Ch. 13 - Estimate the total mass of the Earths atmosphere,...Ch. 13 - Prob. 92GPCh. 13 - Four lawn sprinkler heads are fed by a...Ch. 13 - A bucket of water is accelerated upward at 1.8 g....Ch. 13 - The stream of water from a faucet decreases in...Ch. 13 - You need to siphon water from a clogged sink. The...Ch. 13 - An airplane has a mass of 1.7 106 kg, and the air...Ch. 13 - A drinking fountain shoots water about 14 cm up in...Ch. 13 - A hurricane-force wind of 200 km/h blows across...Ch. 13 - Blood from an animal is placed in a bottle 1.30 m...Ch. 13 - Prob. 101GPCh. 13 - Prob. 102GPCh. 13 - A two-component model used to determine percent...Ch. 13 - (III) Air pressure decreases with altitude. The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Cruise Ship Energy. Suppose we have a spaceship about the size of a typical ocean cruise ship today, which mean...
Life in the Universe (4th Edition)
31. Your forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can withstand o...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following does inflation ...
Cosmic Perspective Fundamentals
Two students the second experiment, in which glider S is fixed in place. Student 1: “When one objects hits anot...
Tutorials in Introductory Physics
The longest wavelength that give constructive interference at an observation point 161 m from one source and 29...
Physics (5th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What fraction of ice is submerged when it floats in freshwater, given the density of water 0°C is very close to 1000 kg/m3?arrow_forwardA spherical particle falling at a terminal speed in a liquid must have the gravitational force balanced by the drag force the buoyant force. The buoyant force is equal to the weight of the displaced fluid, while drag force assumed to be given by Stokes Law, Fs=6rv . Show that the terminal speed is given by v=2R2g9(s1) , where R is be radius of sphere, s is its ad 1 is of be fluid, and the coefficient of viscosity.arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air an apparent mass of 0.0850 kg completely submerged with lungs empty. (a) What of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.7S L, is she able to that without treading water with her lungs filled air?arrow_forward
- If a person's body has a density of 995 kg/m3, what fraction of the body will be submerged when floating gently in (a) freshwater? (b) In salt water with a density of 1027 kg/m3?arrow_forwardDoes atmospheric pressure add to the gas pressure in a rigid tank? In a toy balloon? When, in general, does atmospheric pressure not affect the total pressure in a fluid?arrow_forwardUsing the equation of the previous problem, find the viscosity of motor oil in which a steel ball of radius 0.8 mm falls a terminal speed of 4.32 cm/s. The densities of the ball and the oil are 7.86 and 0.88 g/mL, respectively.arrow_forward
- How would you determine the density of an irregularly shaped rock?arrow_forwardA garden hose with a diameter of 2.0 cm is used to fill a bucket, which has a volume of 0.10 cubic meters. It takes 1.2 minutes to fill. An adjustable nozzle is attached to the hose to decrease the diameter of the opening, which increases the speed of the water. The hose is held level to the ground at a height of 1.0 meters and the diameter is decreased until a flower bed 3.0 meters away is reached. (a) What is the volume flow rate of the through the nozzle when the diameter 2.0 cm? (b) What does is the speed of coming out of the hose? (c) What does the speed of the water coming out of the hose need to be to reach the flower bed 3.0 meters away? (d) What is be diameter of nozzle needed to reach be flower bed?arrow_forwardA fire hose has an inside diameter of 6.40 cm. Suppose such a hose caries a flow of 40.0 L/s starting at a gauge pressure of 1.62106 N/m2. The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Calculate the Reynolds numbers for flow in the fire hose and nozzle to show that flow in each must be turbulent.arrow_forward
- A hot-air balloon consists of a basket banging beneath a large envelope filled with hot air. A topical hot-air balloon has a total mass of 545 kg. including passengers in its basket, and holds 2.55 103 m3 of hot air in its envelope. If the ambient air density is 1.25 kg/m3, determine the density of hot air inside the envelope when the balloon is neutrally buoyant. Neglect the volume of air displaced by the basket and | passengers.arrow_forwardWater enters a smooth, horizontal tube with a speed of 2.0 m/s and emerges out of the tube with a speed of 8.0 m/s. Each end of the tube has a different cross-sectional radius. Find the ratio of the entrance radius to the exit radius.arrow_forwardA 2.50-kg steel gasoline can holds 20.0 L of gasoline when full. What is the average density of gas can, taking into account be volume occupied by steel as well as by gasoline?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY