Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 33P
Management of a home appliance store would like to understand the growth pattern of the monthly sales of Blu-ray disc players over the past two years. Managers have recorded the relevant data in the file P13_33.xlsx.
- a. Create a scatterplot for these data. Comment on the observed behavior of monthly sales at this store over time.
- b. Estimate an appropriate regression equation to explain the variation of monthly sales over the given time period. Interpret the estimated regression coefficients.
- c. Analyze the estimated equation’s residuals. Do they suggest that the regression equation is adequate? If not, return to part b and revise your equation. Continue to revise the equation until the results are satisfactory.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer in Excel:
Consider the data below for the sales of widgets: 1. Using seasonal percentages or seasonal indexes, forecast the sales for each season in year 4, if the annual widgets sales is predicted to be 1500. 2. Develop a regression equation that captures both the trend and seasonality in this data. Use this equation to forecast the sales for each season in year 4.
Season
Year 1
Year 2
Year 3
Fall
505
240
210
Winter
555
460
365
Spring
400
310
204
Summer
560
450
394
A pharmacist has been monitoring sales of a certain over-the-counter pain reliever. Daily sales during the last 15 days were as follows:Day 1 2 3 4 5 6 7 8 9Number sold 36 38 42 44 48 49 50 49 52Day 10 11 12 13 14 15Number sold 48 52 55 54 56 57a. Which method would you suggest using to predict future sales—a linear trend equation or trend-adjusted exponential smoothing? Why?
b. If you learn that on some days the store ran out of the specific pain reliever, would that knowledge cause you any concern? Explain
c. Assume that the data refer to demand rather than sales. Using trend-adjusted smoothing with an initial forecast of 50 for day 8, an initial trend estimate of 2, and α = β = .3, develop forecasts for days 9 through 16. What is the MSE for the eight forecasts for which there are actual data?
A certain agency has a goal of reducing the death and disease caused by tobacco use and exposure to second-hand smoke. One of the many responsibilities of the agency is to collect data on tobacco use. Suppose the following data show the percentage of adults in the
United States who were users of tobacco during an 11-year period:
Year
Percentage of Adults Who Smoke
1
2
22.6
22.2
3
21.4
20.7
5
20.7
6
20.5
7
19.6
8
20.3
9
20.4
10
11
(a) Construct a time series plot.
Percent of Adults Who Smoke
25
20
15
10
5
19.1
18.7
2
4
6
8
10
12
Period
Percent of Adults Who Smoke
15-
10
5
0
0
2
4
6
8
10
12
Period
Percent of Adults Who Smoke
10
2
4
6
8
10
12
Period
Percent of Adults Who Smoke
15
10-
5.
0
2
4
6
8
10
12
Period
Chapter 13 Solutions
Practical Management Science
Ch. 13.3 - The file P13_01.xlsx contains the monthly number...Ch. 13.3 - The file P13_02.xlsx contains five years of...Ch. 13.3 - The file P13_03.xlsx contains monthly data on...Ch. 13.3 - The file P13_04.xlsx lists the monthly sales for a...Ch. 13.3 - Management of a home appliance store wants to...Ch. 13.3 - Do the sales prices of houses in a given community...Ch. 13.3 - Prob. 7PCh. 13.3 - The management of a technology company is trying...Ch. 13.3 - Prob. 9PCh. 13.3 - Sometimes curvature in a scatterplot can be fit...
Ch. 13.4 - Prob. 12PCh. 13.4 - A trucking company wants to predict the yearly...Ch. 13.4 - An antique collector believes that the price...Ch. 13.4 - Stock market analysts are continually looking for...Ch. 13.4 - Suppose that a regional express delivery service...Ch. 13.4 - The owner of a restaurant in Bloomington, Indiana,...Ch. 13.6 - The file P13_19.xlsx contains the weekly sales of...Ch. 13.6 - The file P13_20.xlsx contains the monthly sales of...Ch. 13.6 - The file P13_21.xlsx contains the weekly sales of...Ch. 13.6 - The file P13_22.xlsx contains total monthly U.S....Ch. 13.7 - You have been assigned to forecast the number of...Ch. 13.7 - Simple exponential smoothing with = 0.3 is being...Ch. 13.7 - The file P13_25.xlsx contains the quarterly...Ch. 13.7 - The file P13_26.xlsx contains the monthly number...Ch. 13.7 - The file P13_27.xlsx contains yearly data on the...Ch. 13.7 - The file P13_28.xlsx contains monthly retail sales...Ch. 13.7 - The file P13_29.xlsx contains monthly time series...Ch. 13.7 - A version of simple exponential smoothing can be...Ch. 13 - Prob. 31PCh. 13 - Prob. 32PCh. 13 - Management of a home appliance store would like to...Ch. 13 - A small computer chip manufacturer wants to...Ch. 13 - The file P13_35.xlsx contains the amount of money...Ch. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 39PCh. 13 - The Baker Company wants to develop a budget to...Ch. 13 - Prob. 41PCh. 13 - The file P13_42.xlsx contains monthly data on...Ch. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Stock market analysts are continually looking for reliable predictors of stock prices. Consider the problem of modeling the price per share of electric utility stocks (Y). Two variables thought to influence this stock price are return on average equity (X1) and annual dividend rate (X2). The stock price, returns on equity, and dividend rates on a randomly selected day for 16 electric utility stocks are provided in the file P13_15.xlsx. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.arrow_forwardA small computer chip manufacturer wants to forecast monthly ozperating costs as a function of the number of units produced during a month. The company has collected the 16 months of data in the file P13_34.xlsx. a. Determine an equation that can be used to predict monthly production costs from units produced. Are there any outliers? b. How could the regression line obtained in part a be used to determine whether the company was efficient or inefficient during any particular month?arrow_forwardThe management of a technology company is trying to determine the variable that best explains the variation of employee salaries using a sample of 52 full-time employees; see the file P13_08.xlsx. Estimate simple linear regression equations to identify which of the following has the strongest linear relationship with annual salary: the employees gender, age, number of years of relevant work experience prior to employment at the company, number of years of employment at the company, or number of years of post secondary education. Provide support for your conclusion.arrow_forward
- The owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?arrow_forwardThe file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forward
- Suppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.arrow_forwardThe file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forwardThe file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.arrow_forward
- Management of a home appliance store wants to understand the growth pattern of the monthly sales of a new technology device over the past two years. The managers have recorded the relevant data in the file P13_05.xlsx. Have the sales of this device been growing linearly over the past 24 months? By examining the results of a linear trend line, explain why or why not.arrow_forwardAn antique collector believes that the price received for a particular item increases with its age and with the number of bidders. The file P13_14.xlsx contains data on these three variables for 32 recently auctioned comparable items. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Is the antique collector correct in believing that the price received for the item increases with its age and with the number of bidders? Interpret the standard error of estimate and the R-square value for these data.arrow_forwardA trucking company wants to predict the yearly maintenance expense (Y) for a truck using the number of miles driven during the year (X1) and the age of the truck (X2, in years) at the beginning of the year. The company has gathered the data given in the file P13_13.xlsx. Note that each observation corresponds to a particular truck. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License