Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 24RQ
What is a liquidus temperature? A solidus temperature?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
I need the answer as soon as possible
Choose the correct graph
Chapter 13 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 13 - What are the six activities that are conducted on...Ch. 13 - What is materials processing?Ch. 13 - What are the five basic families of...Ch. 13 - Describe the capabilities of the casting process...Ch. 13 - What are some of the various mold materials and...Ch. 13 - How might the desired production quantity...Ch. 13 - Why is it important to provide a means of venting...Ch. 13 - What types of problem or defect can occur if the...Ch. 13 - Why might product removal be less of a problem...Ch. 13 - What is a casting pattern? Flask? Core? Mold...
Ch. 13 - In a horizontally parted two-part mold, what is...Ch. 13 - What are some of the components that combine to...Ch. 13 - What is a parting line or parting surface?Ch. 13 - What is draft, and why is it used?Ch. 13 - Why is it important to control the solidification...Ch. 13 - What are the two stages of solidification, and...Ch. 13 - Why is it that most solidification does not begin...Ch. 13 - Why might it be desirable to promote nucleation in...Ch. 13 - Nucleation generally begins at preferred sites...Ch. 13 - Why might directional solidification be desirable...Ch. 13 - Describe some of the key features observed in the...Ch. 13 - What is superheat?Ch. 13 - Prob. 23RQCh. 13 - What is a liquidus temperature? A solidus...Ch. 13 - What is the freezing range for a metal or alloy?Ch. 13 - Discuss the roles of casting volume and surface...Ch. 13 - What characteristics of a specific casting process...Ch. 13 - What is the correlation between cooling rate and...Ch. 13 - What is the chill zone of a casting, and why does...Ch. 13 - Which of the three regions of a cast structure is...Ch. 13 - What is dross or slag, and how can it be prevented...Ch. 13 - What are some of the possible approaches that can...Ch. 13 - What is a misrun or cold shut, and what causes...Ch. 13 - What is fluidity, and how can it be measured?Ch. 13 - What is the most important factor controlling the...Ch. 13 - What defect can form in sand castings if the...Ch. 13 - Why is it important to design the geometry of the...Ch. 13 - Why might it be preferable to attach gates to the...Ch. 13 - Prob. 39RQCh. 13 - What are some desirable features in the sprue...Ch. 13 - What is a choke, and how does its placement affect...Ch. 13 - What features can be incorporated into the gating...Ch. 13 - What are some of the materials and designs of...Ch. 13 - What factors might influence the positioning of...Ch. 13 - What features of the metal being cast tend to...Ch. 13 - What are the three stages of contraction or...Ch. 13 - Why is it more difficult to prevent shrinkage...Ch. 13 - What steps can be taken to compensate for the...Ch. 13 - During what stage of shrinkage might hot tears...Ch. 13 - What is the role of a riser?Ch. 13 - Why is it desirable to design a casting to have...Ch. 13 - What is yield, and how does it relate to the...Ch. 13 - Based on Chvorinovs rule, what would be an ideal...Ch. 13 - Define the following riser-related terms: top...Ch. 13 - What assumptions were made when using Chvorinovs...Ch. 13 - Discuss aspects relating to the connection between...Ch. 13 - What is the purpose of a chill? Of an insulating...Ch. 13 - What are some materials that are commonly used to...Ch. 13 - What types of modifications or allowances are...Ch. 13 - Prob. 60RQCh. 13 - What is the purpose of a draft or taper on pattern...Ch. 13 - Why is it desirable to make the pattern allowances...Ch. 13 - What additional adjustment or correction must be...Ch. 13 - What are some of the features of the casting...Ch. 13 - Prob. 65RQCh. 13 - What are some design recommendations for inside...Ch. 13 - What are some appearance considerations in parting...Ch. 13 - Prob. 68RQCh. 13 - Prob. 69RQCh. 13 - Using Chvorinovs rule as presented in the text...Ch. 13 - Reposition the riser in Problem 1 so that it sits...Ch. 13 - A rectangular casting having the dimensions 3 in....Ch. 13 - A cylinder with a diameter of 2.5 in. and a height...Ch. 13 - Figure 13.Ashows the wall profile of a cast iron...Ch. 13 - Investigate various experimental techniques to...Ch. 13 - Porosity within a casting can be either...Ch. 13 - The chapter text describes various materials that...Ch. 13 - What is the most likely source of the gas bubbles?...Ch. 13 - What factors may have caused the penetration...Ch. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The question is the image, and could you explain to me how to get the answer because the teacher never discusssed this type of exercise in class and i don't know the proccess of solving itarrow_forwardwhat are the stages of solidifaction in a casting process? when do those happen?what is under cooling?arrow_forwardWhat are the three steps in precipitation hardening?arrow_forward
- Q1: Austenitized 40 mm diameter 5140 alloy steel bar is quenched in agitated oil. Predict what is the Rockwell hardness of this bar will be at (a) its surface and (b) its center (c) What do you think about the difference in hardness number between the center and surface (d) Differentiate between hardness and hardenability (e) Rank the steels in the figure below from lowest to highest hardenability and explain why. 600- Bar diameter (mm) 100 80 60 40 20 0 300 0 Cooling rate at 700°C (°C/sec). -150 55 0 تنا 25 ------- 5 S 10 12.5 8 M-R L 1/2 34-R Agitated oil 15 20 ¼ ¾ Distance from quenched end. De (Jominy distance) 5,5 54 Car Bar diameter (in.) 0 25 mm. 1 in. Hardness (Rockwell C) Where (C = center, S = surface, M-R = mid-radius) 2828 292 65 60- 55- 50 45 40 35 30 25 20 15 10 0 J 10 5140 30 20 Distance from quenched end (mm) 4340 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Distance from quenched end (sixteenths of an inch) 40 9840 4140 8640 50arrow_forwardA liquid cast iron has a density of 7.65 g/cm3. Immediately after solidification, the density of the solid cast iron is found to be 7.71 g/cm3. Determine the percent volume change that occurs during solidification. Does the cast iron expand or contract during solidification?arrow_forwardQ1/ In a homogeneous solidification process, assume molten metal solidifies into a spherical nucleus with a BCC structure. The given data are; lattice parameter (0.292 nm), the heat of fusion energy (1.85×10-9 J/m³), latent surface free energy (0.204 J/m²), critical radius (1-35 nm), equilibrium melting temperature (1516 K), and room temperature (27 °C). Calculate the following for this metal; (a) supercooling value temperature (b) activation tree energy (c) number of atoms in a nucleus of critical size.arrow_forward
- Q6 Use the Iron carbon diagram to find 4 of the following. ( 1- The range of solidification temp. (start to end of solidification) for cast iron with 3% C. 2- The solid and liquid percent for Cast Iron with 2.7%C at 1320 °C. 3- Draw the expected microstructure at room temp. for hypo-eutectoid steel with 0.7%C. 4- Draw the expected cooling curve from the melting point to room temp. for cast iron with 4.3%C. 5- The steps and the allotropy change for steel with 0.01%C.arrow_forwardCan anyone help with this questionarrow_forwardPlease tell which structure is better and whyarrow_forward
- 1) From the figure of cooling curve find the following: (a) Pouring temperature (b) Cooling rate (c) Solidus temperature (d) Super heating (e) Super cooling (f) Solidification range 800 (g) Local solidification time (h) Total solidification time 600 400 8 10 Time (min) 2) From the figure of cooling curve find the following: (a) Pouring temperature (b) Cooling rate (c) Liquidus temperature (d) Solidus temperature (e) Super heating (f) Super cooling (g) Solidification range 300 (h) Local solidification time 200E (i) Total solidification time 100 4. 8 12 16 20 24 28 32 36 Times (sec) Temperature (°C) Temperature (°C)arrow_forwardanswer the following questionsarrow_forwardWith the aid of illustrations, explain the relationship between a vapor phase and a condensed phase.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License