Concept explainers
(a)
Interpretation:
To identify the correct graph for the relationship between the pressure and temperature of 1 mole of an ideal gas.
Concept Introduction:
The relation between pressure and volume can be explained with the help of Boyle’s law whereas Charles’s law determines the relation between volume and temperature at constant pressure.
Gay-Lussac law of ideal gas represents the relation between pressure and temperature at constant volume.
(b)
Interpretation:
To identify the correct graph for the relationship between the pressure and volume of 1 mole of an ideal gas.
Concept Introduction:
The relation between pressure and volume can be explained with the help of Boyle’s law whereas Charles’s law determines the relation between volume and temperature at constant pressure.
Gay-Lussac law of ideal gas represents the relation between pressure and temperature at constant volume.
(c)
Interpretation:
To identify the correct graph for the relationship between the volume and temperature of 1 mole of an ideal gas.
Concept Introduction:
The relation between pressure and volume can be explained with the help of Boyle’s law whereas Charles’s law determines the relation between volume and temperature at constant pressure.
Gay-Lussac law of ideal gas represents the relation between pressure and temperature at constant volume.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Introductory Chemistry: A Foundation
- As 1 g of (lie radioactive element radium decays over 1 year. k produces 1.161018 alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure ¡n pascal of the helium gas produced if it occupies a volume of 125 mL at a temperature of 25 C?arrow_forwardHow would the graph in Figure 9.12 change if the number of moles of gas in the sample used to determine the curve were doubled?arrow_forwardWhich of the following statements is(are) true? a. If the number of moles of a gas is doubled, the volume will double, assuming the pressure and temperature of the gas remain constant. b. If the temperature of a gas increases from 25C to 50C, the volume of the gas would double, assuming that the pressure and the number of moles of gas remain constant. c. The device that measures atmospheric pressure is called a barometer. d. If the volume of a gas decreases by one half, then the pressure would double, assuming that the number of moles and the temperature of the gas remain constant.arrow_forward
- 2. The volume of a gas sample is 235 mL at a temperature of 25 ℃. At what temperature would that same gas sample have a volume of 310. mL, if the pressure of the gas sample is held constant? −47.0 ℃ 69.4 ℃ 33.1 ℃ 120.℃arrow_forwardYou have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardPlot the data given in Table 5.3 for oxygen at 0C to obtain an accurate molar mass for O2. To do this, calculate a value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). On a graph show the apparent molar mass versus the pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forward
- Many nitrate salts can be decomposed by heating. For example, blue, anhydrous copper(II) nitrate produces the gases nitrogen dioxide and oxygen when heated. In the laboratory, you find that a sample of this salt produced a 0.195-g mixture of gaseous NO2 and O2 with a total pressure of 725 mm Hg at 35 C in a 125-mL flask (and black, solid CuO was left as a residue). What is the average molar mass of the gas mixture? What are the mole fractions of NO2 and O2 in the mixture? What amount of each gas b in the mixture? Do these amounts reflect the relative amounts of NO2 and O2 expected based on the balanced equation? Is it possible that the fact that some NO2 molecules combine to give N2O4 plays a role? Heating copper(II) nitrate produces nitrogen dioxide and oxygen gas and leaves a residue of copper(ll) oxide.arrow_forwardA certain flexible weather balloon contains helium gas at a volume of 855 L. Initially, the balloon is at sea level where the temperature is 25C and the barometric pressure is 730 torr. The balloon then rises to an altitude of 6000 ft, where the pressure is 605 torr and the temperature is 15C. What is the change in volume of the balloon as it ascends from sea level to 6000 ft?arrow_forward5-114 Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate based on the following balanced net ionic equation: (a) How many moles of wet CO (g), collected at 60.°C and 774 torr total pressure, are produced by the complete reaction of 10.0 g of CaCO3 with excess acid? (b) What volume does this wet CO2 occupy? (c) What volume would the CO2 occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? The vapor pressure of water at 60.°C is 149.4 mm Hg.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax