Concept explainers
A sluice gate with free outflow is used to control the discharge rate of water through a channel Determine the flow rate per unit width when the gate is raised to yield a gap of 50 cm and the upstream flow depth is measured to be 2.8 m. Also determine the flow depth and the velocity downstream.
The flow rate per unit width.
The flow depth.
The velocity for downstream.
Answer to Problem 142P
The flow rate per unit width is
The flow depth is
The velocity for downstream is
Explanation of Solution
Given Information:
The height for the sluice gate is
Write the expression for the flow depth.
Here, the height of the sluice gate is
Write the expression for the discharge rate.
Here, the discharge coefficient is
Write the expression for the cross- sectional area at upstream.
Write the expression for the cross -sectional area at downstream.
Write the expression for the upstream velocity of the fluid.
Write the expression for the downstream velocity of the fluid.
Write the expression for the upstream specific energy.
Write the expression for the downstream specific energy.
Calculation:
Substitute
Refer to Figure 13.44 "Discharge coefficient for the drowned and free discharge from underflow gates" to obtain the coefficient of the discharge as
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Since, the specific energy at downstream is equal the specific stream at upward stream hence
Substitute
Substitute
Substitute
Conclusion:
The flow rate per unit width is
The flow depth is
The velocity for downstream is
Want to see more full solutions like this?
Chapter 13 Solutions
Fluid Mechanics Fundamentals And Applications
- The radial gate used to control the flow at 2.5m wide rectangular channel. For a specific opening the discharge from this gate was 3.65-³/5. Find G for modular flow. use 8=20 and y₁=1.76m.arrow_forwardThe water flows in the channel with a base slope of 0.003 and the cross-section shown in Figure 3. The dimensions of different subdivisions and the Manning coefficients for surfaces are also shown in the figure.a) calculate the volume flow flowing through the Channel.B) calculate the Manning coefficient.arrow_forwardConsider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forward
- Find the velocity of flow and rate of flow of water through a rectangular channel of 6 m wide and 3 m deep, when water is running full. The channel is having bed slope as 1 in 2000. Take Chezy’s constant C = 55arrow_forwardEXERCISE 3: Water flows at a rate of q=3.13 m/s.m in a rectangular channel shown in the figure on the right. Ja0.00023 no0.015 • Determine the uniform flow depths and the types of flow in Ja 0.00762 Pe-0.015 different parts of the channel. Draw the water surface profile in the transition zone,arrow_forwardQuestion : A stream bed has a rectangular cross section 5 meters wide and a slope of 0.0002 m/m. The flow rate in the stream is 8.75 m³/s. A dam is built across the stream, causing the water surface to rise to 2.5 meters just upstream of the dam, as shown below. Assume n = 0.015. y = yn 2.5 m a. Find the normal depth, yn, corresponding to this flow rate and channel geometry. You do not need to solve the equation by hand. To get full credit, show your equation with only one unknown. b. Find the critical depth, yc. c. The yn is found to be 1.8 m by solving the equation numerically. Identify the water surface profile upstream of the dam. Explain your answer for full credit.arrow_forward
- Water flows at a steady and uniform depth of 2 m in an open channel of rectangular crosssection having a base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height of the hump and sketch the flow profile. Consider the value of Manning’s roughness coefficient n =0.02 for the channel surface.arrow_forward4. The discharge from a 150 mm diameter orifice under a head of 3.05m and coefficient of discharge, C = 0.60 flows into a rectangular channel and over a rectangular suppressed weir. The channel is 1.83m wide and the weir has height, P = 1,50m and length, L = 0.31m. Determine the depth of water in the channel. Use Francis formula and neglect velocity of approach.arrow_forwardA reservoir discharges through a sluice 0.915 m wide by 1.22 m deep. The top of the opening is 0.61 m below the water level in the reservoir and the downstream water level is below the bottom of the opening. Calculate (a) the discharge through the opening if Cg = 0.60 and (b) percentage error if the opening is treated as a small orifice. %3Darrow_forward
- Please give me right solution... Please remember I want correct solution A rectangular weir having a length of one meter is constructed at one end of a tank having a square section 20 x 20m and a height 10m. If the initial head on the weir is 1m, determine the time required to discharge a volume of 72 cu.m.arrow_forward2.Water flows through a rectangular channel with a width b = 2 m and a height (Pw) = 1 m, the flow rate ranges from Qmin = 0.02 m^3/s and Qmax = 0.60 m^3/s. This flow rate is measured using Rectangular sharp-crested weir Triangular sharp-crested with = 90^o Broad-crested weir Plot onto the graph Q = Q(H) for each type of weir and give your analysis which type of weir is most appropriate to applyarrow_forwardA spillway 45 m long having discharge coefficient 1.8 permits a maximum discharge of 90 m³/s from a storage resevoir. It is proposed to replace the spillway by a siphon spillway of section 0.75 m x 1.5 m with operating head 8 m and discharge coefficient 0.64. Find the number of siphons required and the amount of extra water sored, if the siphons have a primig depth of 0.15 m; the average surface area of the reservoir being 5 x 105 m².arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY