The gas-phase reaction of nitrogen monoxide with chlorine proceeds to form nitrosyl chloride.
Evaluate the following proposed mechanism to determine whether it is consistent with the experimental results, and identify intermediates, if any.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Chemistry: Principles and Practice
- Can a reaction mechanism ever be proven correct? Can it be proven incorrect?arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forwardConsider the reaction of ozone and nitrogen monoxide to form nitrogen dioxide and oxygen. O3(g) + NO(g) NO2(g) + O2(g) Which of the following orientations for the collision between ozone and nitrogen monoxide could perhaps lead to an effective collision between the molecules? (a) (b) (c) (d)arrow_forward
- (Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardNitrogen monoxide reacts with hydrogen as follows: 2NO(g)+H2(g)N2O(g)+H2O(g) The rate law is [H2]/t = k[NO]2[H2], where k is 1.10 107 L2/(mol2 s) at 826C. A vessel contains NO and H2 at 826C. The partial pressures of NO and H2 are 144 mmHg and 315 mmHg, respectively. What is the rate of decrease of partial pressure of NO? See Problem 13.151.arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forward
- The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardThe reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s) + 2I-3(aq) + 3H2O(l) was studied at 0C, and the following data were obtained: [H2SeO3]0 (mol/L) [H+]0 (mol/L) [I]0(mol/L) Initial Rate (mol/L s) 1.0 104 2.0 102 2.0 102 1.66 107 2.0 104 2.0 102 2.0 10-2 3.33 107 3.0 104 2.0 102 2.0 102 4.99 107 1.0 104 4.0 102 2.0 102 6.66 107 1.0 104 1.0 102 2.0 102 0.42 107 1.0 104 2.0 102 4.0 102 13.2 107 1.0 104 1.0 102 4.0 102 3.36 107 These relationships hold only if there is a very small amount of I3 present. What is the rate law and the value of the rate constant? (Assumethatrate=[H2SeO3]t)arrow_forward
- The ozone in the Earths ozone layer decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast equilibrium and a slow step: Show that the mechanism agrees with this experimental rate law: Rate = (1/2)[O3]/t = k[O3]2[O2].arrow_forwardAt 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning