Principles of Geotechnical Engineering (MindTap Course List)
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 13, Problem 13.19P
To determine

Find the Rankine active force Pa per unit length of the wall and the location z¯ of the resultant force.

Expert Solution & Answer
Check Mark

Answer to Problem 13.19P

The Rankine active force Pa per unit length of the wall is 587.34kN/m_.

The location z¯ of the resultant force is 3.72m_.

Explanation of Solution

Given information:

The height (H) of the retaining wall is 12 m.

The depth H1 of sand is 4.0 m.

The unit weight γ1 of the sand is 17kN/m3.

The sand friction angle ϕ1 is 36°.

The cohesion c1 of sand is 0.

The surcharge pressure (q) is 25kN/m2.

The depth H2 of saturated sand is 12 m.

The saturated unit weight γ2 of the sand is 23.2kN/m3.

The saturated sand friction angle ϕ2 is 42°.

The cohesion c2 of saturated sand is 0.

Calculation:

For sand:

Determine the active earth pressure coefficient Ka using the formula.

Ka=tan2(45ϕ2)

Substitute 36° for ϕ.

Ka=tan2(4536°2)=tan2(4518)=tan2(27)=0.259

For saturated sand:

Determine the active earth pressure coefficient Ka using the formula.

Ka=tan2(45ϕ2)

Substitute 42° for ϕ.

Ka=tan2(4542°2)=tan2(4521)=tan2(24)=0.198

Determine the total stress σo at 0 m depth using the relation.

σo=q

Substitute 25kN/m2 for q.

σo=25kN/m2

Determine the pore water pressure at 0 m depth using the relation.

u=γw×h

Here, γw is the unit weight of the water.

Take the unit weight of the water as 9.81kN/m3.

Substitute 9.81kN/m3 for γw and 0 m for h.

u=9.81×0=0

Determine the effective active earth pressure σa at 0 m depth using the relation.

σa=σoKa

Substitute 25kN/m2 for σo and 0.259 for Ka.

σa=25(0.259)=6.47kN/m2

Determine the total stress (sand) σo at 4 m depth using the relation.

σo=q+γ1×H1

Substitute 25kN/m2 for q, 17kN/m3 γ1, and 4.0 m for H1.

σo=25+17×4.0=93kN/m2

Determine the total stress (saturated sand) σo at 4 m depth using the relation.

σo=q+γ2×H2

Substitute 25kN/m2 for q, 17kN/m3 γ2, and 4.0 m for H2.

σo=25+17×4.0=93kN/m2

Determine the pore water pressure at 3.0 m depth using the relation.

u=γw×h

Substitute 9.81kN/m3 for γw and 0 m for h.

u=9.81×0=0

Determine the effective active earth pressure (sand) σa at 3.0 m depth using the relation.

σa=σoKa

Substitute 93kN/m2 for σo and 0.259 for Ka.

σa=93(0.259)=24.08kN/m2

Determine the effective active earth pressure (saturated sand) σa at 3.0 m depth using the relation.

σa=σoKa

Substitute 93kN/m2 for σo and 0.198 for Ka.

σa=93(0.198)=18.41kN/m2

Determine the total stress σo at 12 m depth using the relation.

σo=γ1×H1+(γ2γw)×H2

Substitute 17kN/m3 γ1, 4.0 m for H1, 23.2kN/m3 γ2, 9.81kN/m3 for γw, and 8.0 m for H2.

σo=17×4+(23.29.81)×8=175.12kN/m2

Determine the pore water pressure at 8 m depth using the relation.

u=γw×h

Substitute 9.81kN/m3 for γw and 8.0 m for h.

u=9.81×8=78.48kN/m2

Determine the effective active earth pressure σa at 8 m depth using the relation.

σa=σoKa

Substitute 175.12kN/m2 for σo and 0.198 for Ka.

σa=175.12(0.198)=34.67kN/m2

Show the variation of effective active earth pressure and pore water pressure for the respective depth as in Figure 1.

Principles of Geotechnical Engineering (MindTap Course List), Chapter 13, Problem 13.19P

Refer Figure 1.

Determine the active earth pressure per unit length for area 1 using the relation.

A1=bh

Here, b is the width and h is the depth.

Substitute 6.47kN/m2 for b and 12 m for h.

A1=(6.47×12)=77.64kN/m

Determine the active earth pressure per unit length for area 2 using the relation.

A2=12bh

Substitute (24.086.47)kN/m2 for b and 4.0 m for h.

A2=12×(24.086.47)×4.0=0.5×70.44=35.22kN/m

Determine the active earth pressure per unit length for area 3 using the relation.

A3=bh

Substitute 8.0 m for b and (18.416.47)kN/m2 for h.

A3=8(18.416.47)=95.52kN/m

Determine the active earth pressure per unit length for area 4 using the relation.

A4=12bh

Substitute 8.0 m for b and (34.6718.41)kN/m2 for h.

A4=12×8.0×(34.6718.41)=0.5×130.08=65.04kN/m

Determine the active earth pressure per unit length for area 5 using the relation.

A5=12bh

Substitute 8.0 m for b and 78.48kN/m2 for h.

A4=12×8.0×78.48=313.92kN/m

Determine the Rankine active force Pa per unit length of the wall using the relation.

Pa=A1+A2+A3+A4

Substitute 77.64kN/m for A1, 35.22kN/m for A2, 95.52kN/m for A3, 65.04kN/m for A4, and 313.92kN/m for A5.

Pa=77.64+35.22+95.52+65.04+313.92=587.34kN/m

Thus, the Rankine active force Pa per unit length of the wall is 587.34kN/m_.

Determine the location z¯ of the resultant force by taking the moment about the bottom of the wall.

z¯=A1(H2)+A2(H2+H13)+A3(H22)+A4(H23)+A5(H23)Pa

Substitute 77.64kN/m for A1, 12 m for H, 8.0 m for H2, 4.0 m for H1, 35.22kN/m for A2, 95.52kN/m for A3, 65.04kN/m for A4, 313.92kN/m for A5, and 587.34kN/m for Pa.

z¯=77.64(122)+35.22(8+43)+95.52(82)+65.04(83)+313.92(83)587.34=456.84+328.72+382.08+173.44+837.12587.34=3.72m

Thus, the location of the resultant force is 3.72m_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q // A residential city with a growing population of 50,000 people is experiencing challenges related to wastewater management. The city council has proposed building a combined wastewater treatment plant to ensure that domestic and industrial wastewater is treated effectively, meeting regulatory standards for discharge. The community has identified the need for an engineering solution that considers environmental, technical, and operational aspects. Scenario Details: Each person in the city consumes an average of 200 liters of water per day, and the organic load generated per person is 40 grams daily. The city also houses light industries that generate 0.25 million liters per day (MLD) of wastewater with a BOD, concentration of 600 mg/L. Environmental regulations mandate that treated wastewater discharged from the plant must not exceed a BOD5 of 20 mg/L. The treatment plant must be designed to operate efficiently under seasonal temperature variations, with temperatures reaching 35°C…
23) An HSS 10 × 6 × 5/16 with F, = 46 ksi is used as a column. The length is 16 feet. Both ends are pinned, and there is support against weak axis buckling at a point 6 feet from the top. Determine a. the design strength for LRFD. b.the allowable stress for ASD 6' 10' 16' y-axis x-axis (good luck) Falls 12A
+ H.W ATF pland as illustrated in hig below. has. the following: a primary clarifier with a 16.8m diameter, 21m (SWD), and Single peripheral weir, an 26m diameter TE with a 2.1 deep stone filled bed; and a final settling Tank with a 15-2m diameter, 2.1m (SWD), and single peripheral weir, The normal operating recirculation ratio is NA 0.5 with return to the wet well from the bottom of the final during periods of low influent flow (fig② The daily wow flow is 5220 m³/d with an average BOD of 180-9/1 Calculate the loadings on all of the units, and the anticipated. effluent BOD 2 20°C and 16C * Assume @ efficiency of removal BOD load of 78% in 20 C Is of 68% 7416 68/74/6 Futur
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning