Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.14PP
To the head-versus-capacity plot of Problem 13.13 add plots for efficiency and power required.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Provide the step by step manual solution, given, and schematic diagram for below mentioned problem.
A pump that operates ahead of 30 m is use to deliver 80 liters per second of water at an efficiency of 85%. The pump is driven by a diesel engine by means of chain and sprocket with a service factor of 1.3. If horsepower per strand is 25, find the approximate number of strands needed
4. A conventional hydropower station in a dam impounds 390 ft of fresh water and has a
flow of 24,720 cubic feet per second.
a. What is the maximum possible amount of power (in MW) that can be
developed by a turbine installed at this station?
b. Calculate the power specific speed Nóp assuming a synchronous speed of 90
rpm and determine the appropriate turbine type (Pelton, Francis, or Kaplan)
for this installation.
c. If the turbine efficiency is 92.7%, what is the actual power developed (in
MW)?
Task 1
The Data: -
Clearance volume of 70 cm3, the bore of cylinder is 130 mm, the stroke
of compressor is 70 mm, the measured low and high pressures are 120
and 700 kPa, respectively, the volume before and after compression are
900 and 250 cm3, respectively.
1. Determine the volumetric efficiency of a reciprocating compressor
2. Calculate the isothermal and polytropic work of a reciprocating
compressor
3. Evaluate the isothermal efficiency
Chapter 13 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 13 - List 12 Factors that should be considered when...Ch. 13 - List items that must be specified for pumpsCh. 13 - Describe a positive-displacement pump.Ch. 13 - Name four examples of rotary positive-displacement...Ch. 13 - Name three types of reciprocating...Ch. 13 - Describe a kinetic pumpCh. 13 - Name three classifications of kinetic pumps.Ch. 13 - Describe the action of the impellers and the...Ch. 13 - Describe a jet pumpCh. 13 - Distinguish between a shallow-well jet pump and a...
Ch. 13 - Describe the difference between a simplex...Ch. 13 - Describe the general shape of the plot of pump...Ch. 13 - Describe the general shape of the plot of total...Ch. 13 - To the head-versus-capacity plot of Problem 13.13...Ch. 13 - To what do the affinity laws refer in regard to...Ch. 13 - Fora given centrifugal pump, if the speed of...Ch. 13 - For a given centrifugal pump, if the speed of...Ch. 13 - For a given centrifugal pump, if the speed of...Ch. 13 - For a given size of centrifugal pump casing, if...Ch. 13 - For a given size of centrifugal pump casing, if...Ch. 13 - For a given size of centrifugal pump casing, if...Ch. 13 - Describe each part of this centrifugal pump...Ch. 13 - For the line of pumps shown in Fig.13.22 specify a...Ch. 13 - For the line of pumps shown in Fig. 13.22 ,...Ch. 13 - For the 2x310 centrifugal pump performance curve...Ch. 13 - For the 2310 centrifugal pump performance curve...Ch. 13 - Using the result from Problem 13.26 describe how...Ch. 13 - For the centrifugal pump performance curve shown...Ch. 13 - Prob. 13.29PPCh. 13 - State some advantages of using a variable-speed...Ch. 13 - Describe how the capacity, efficiency, and power...Ch. 13 - If two identical centrifugal pumps are connected...Ch. 13 - Describe the effect of operating two pumps in...Ch. 13 - For each of the following sets of operating...Ch. 13 - For the 112313 centrifugal pump performance curve...Ch. 13 - For the 6817 centrifugal pump performance curve...Ch. 13 - Figure 13.52 shows that a mixed-flow pump is...Ch. 13 - Compute the specific speed for a pump operating at...Ch. 13 - Compute the specific speed for a pump operating at...Ch. 13 - Compute the specific speed for a pump operating at...Ch. 13 - Compute the specific speed for a pump operating at...Ch. 13 - It is desired to operate a pump at 1750 rpm by...Ch. 13 - Define net positive suction head (NPSH).Ch. 13 - Distinguish between NPSH available and NPSH...Ch. 13 - Describe what happens to the vapor pressure of...Ch. 13 - Describe why it is important to consider NPSH when...Ch. 13 - For what point in a pumping system is the NPSH...Ch. 13 - Discuss why it is desirable to elevate the...Ch. 13 - Discuss why it is desirable to use relatively...Ch. 13 - Prob. 13.50PPCh. 13 - If we assume that a given pump requires 7.50 ft of...Ch. 13 - Determine the available NPSH for the pump in...Ch. 13 - Find the available NPSH when a pump draws water at...Ch. 13 - A pump draws benzene at 25 C from a tank whose...Ch. 13 - Determine the available NPSH for the system shown...Ch. 13 - Determine the NPSH available when a pump draws...Ch. 13 - Determine the NPSH available when a pump draws...Ch. 13 - Determine the NPSH available when a pump draws...Ch. 13 - Determine the NPSH available when a pump draws...Ch. 13 - Repeat Problem 13.56 if the pump is 44 in below...Ch. 13 - Repeat Problem 13.59 if the pump is 27 in above...Ch. 13 - Repeat Problem 13.57 if the pump is 1.2 m below...Ch. 13 - Repeat Problem 13.58 if the pump is installed...Ch. 13 - A pump draws propane at F (sgfrom a tank whose...Ch. 13 - A pump draws propane at 45 C (sg =0.48 ) from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11.4. Calculate RP.M. in Example 11.2.arrow_forwardAs shown in the picture blew, a pump can deliver volume flow rate of of water through a vertical lift of . The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel pipe. The energy loss . (2) Select the correct simplified general energy equation for point 1 and 2______________arrow_forwardAs shown in the picture blew, a pump can deliver volume flow rate of of water through a vertical lift of . The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel pipe. The energy loss . (3) Calculate energy added per unit weight by the pump __________marrow_forward
- 10.25 For a flow rate of 12 L/s and turbine speed of 65 rpm, estimate the power transferred from the jet to the turbine wheel. 50 mm Pipe Water 1.2 md- 3 m DO N ORY inichol@enicottedtyarrow_forward5. Calculate the swept volume and mean effective pressure (MEP) of a 4-Cylinder, 2-stroke IC engine that has the following particulars: (Show the computation) Engine speed = 3000 rpm, bore = 120 mm, crank radius = 60 mm, Mechanical efficiency = 90% and the engine develops 75 bhp.arrow_forwardDo not give answer in image formet and hand writingarrow_forward
- 6. A double overhung impulse turbine of 85% efficiency is direct connected to a 30,000 kW generator of 95% efficiency. Elevation of headwater level is 2730 ft. above sea level, elevation of tailwater level is 1260 ft. above sea level, turbine setting is 12 ft., velocity of flow in penstock is equal to 0.025/2gh, loss of head due to friction is 2% of gross head. Compute the flow through the turbine in ft³/s.arrow_forwardAs shown in the picture blew, a pump can deliver volume flow rate of of water through a vertical lift of . The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel pipe. The energy loss . (1) Calculate velocity at the exit of point 2__________m/sarrow_forwardWater at 5°C is to be pumped from the river to the bottom of a water tower. The pump is 5 m above the river (dimension "a" on the diagram below) and is supplied by a 6.00 inch schedule 40 pipe. The tank is 19.5 m above the pump (dimension "b" on the diagram below) and is supplied by a 4 inch schedule 40 pipe. The water level in the tank is 4.3 m above the inlet (dimension "c" on the diagram below). The pump delivers 0.021 m/s. Losses are estimated to be 1.2 m between the river and the pump, and 4.2 m between the pump and the tank. Discharge line Suction line Pump River a) Calculate the losses in the suction line in kPa, based on the given head loss in m. kPa b) Calculate velocity in the suction line in m/s. m/s c) What is the pressure at the inlet to the pump in kPa? kPaarrow_forward
- A cylinder with a bore of 4.5 inches and a rod diameter of 1.5 inches is to be used in a system with a 6 GPM pump. What is the extension speed of the cylinder?arrow_forwardSolve all parts in the question which is given in the image please. Assume any data if it is missing. Assume blade angles in between 25° to 60° any value no issues. please solve the problem.arrow_forwardAssignment 10.1 A Pelton turbine is designed to develop power having a wheel diameter D = 2.5 m, a water head at the inlet of the nozzle of H = 500 m and a flow rate of Q = 3 m³/s, with a rotating speed N = 290 rpm. The nozzle efficiency nn = 0.95, the relative flow exiting from the bucket is such that a = 165° and the velocity coefficient of the bucket is Cyp = 0.96. Assume that the mechanical and volumetric efficiencies are respectively nm = 0.9 and 7, = 0.96. 1) Calculate the different velocity components (U,V,W,Vµ, Wy, V,) and draw the velocity diagrams at the inlet and outlet of the bucket. 2) Determine: i) the hydraulic efficiency nh, ii) the output power P;, iii) the output torque T; and iv) the jet diameter dn. 3) Calculate the maximum hydraulic efficiency h.max and the corresponding power shaft and torque 4) State briefly why a Pelton turbine is an impulse turbine. Bucket Top view Jet a U Nozzle W2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license