Multivariable Calculus
11th Edition
ISBN: 9781337275378
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.5, Problem 71E
(a)
To determine
To Calculate: The curvature k for the polar curve
(b)
To determine
To Calculate: The curvature k for the polar curve
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3) Sketch a graph of the helix r(t) = (− cos(2ñt), 4 sin(2πt), 3t), listing the rotation
direction, period, spacing, radius or major/minor axes, and starting point. What is
the curvature of this function when t = 0?
Eeeeée
Show all/each step of the problem.
Chapter 12 Solutions
Multivariable Calculus
Ch. 12.1 - CONCEPTS CHECK Vector-valued FunctionDescribe how...Ch. 12.1 - Continuity of a Vector-valued FunctionDescribe...Ch. 12.1 - Prob. 3ECh. 12.1 - Prob. 4ECh. 12.1 - Prob. 5ECh. 12.1 - Prob. 6ECh. 12.1 - Prob. 7ECh. 12.1 - Prob. 8ECh. 12.1 - Prob. 9ECh. 12.1 - Prob. 10E
Ch. 12.1 - Prob. 11ECh. 12.1 - Prob. 12ECh. 12.1 - Writing a Vector-Valued FunctionIn Exercises 1316,...Ch. 12.1 - Prob. 14ECh. 12.1 - Writing a Vector-Valued FunctionIn Exercises 1316,...Ch. 12.1 - Prob. 16ECh. 12.1 - Prob. 17ECh. 12.1 - Prob. 18ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Prob. 22ECh. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - Prob. 27ECh. 12.1 - Prob. 28ECh. 12.1 - Prob. 29ECh. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.1 - Sketching a Space Curve In Exercises 31-38, sketch...Ch. 12.1 - Prob. 34ECh. 12.1 - Prob. 35ECh. 12.1 - Prob. 36ECh. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - Prob. 39ECh. 12.1 - Prob. 40ECh. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.1 - Prob. 44ECh. 12.1 - Prob. 45ECh. 12.1 - Prob. 46ECh. 12.1 - Representing a Graph by a Vector-Valued Function...Ch. 12.1 - Prob. 48ECh. 12.1 - Representing a Graph by a Vector-Valued Function...Ch. 12.1 - Prob. 50ECh. 12.1 - Prob. 51ECh. 12.1 - Prob. 52ECh. 12.1 - Representing a Graph by a Vector-Valued Function...Ch. 12.1 - Prob. 54ECh. 12.1 - Prob. 55ECh. 12.1 - Prob. 56ECh. 12.1 - Prob. 57ECh. 12.1 - Prob. 58ECh. 12.1 - Prob. 59ECh. 12.1 - Prob. 60ECh. 12.1 - Prob. 61ECh. 12.1 - Representing a Graph by Vector-Valued Function In...Ch. 12.1 - Prob. 63ECh. 12.1 - Prob. 64ECh. 12.1 - Finding a Limit In Exercises 65-70, find the limit...Ch. 12.1 - Prob. 66ECh. 12.1 - Finding a Limit In Exercises 65-70, find the limit...Ch. 12.1 - Prob. 68ECh. 12.1 - Finding a Limit In Exercises 65-70, find the limit...Ch. 12.1 - Prob. 70ECh. 12.1 - Continuity of a Vector-Valued Function In...Ch. 12.1 - Prob. 72ECh. 12.1 - Continuity of a Vector-Valued Function In...Ch. 12.1 - Prob. 74ECh. 12.1 - Continuity of a Vector-Valued Function In...Ch. 12.1 - Prob. 76ECh. 12.1 - Prob. 77ECh. 12.1 - Prob. 78ECh. 12.1 - Prob. 79ECh. 12.1 - Prob. 80ECh. 12.1 - Prob. 81ECh. 12.1 - Prob. 82ECh. 12.1 - Prob. 83ECh. 12.1 - Prob. 84ECh. 12.1 - Prob. 85ECh. 12.1 - Prob. 86ECh. 12.1 - Prob. 87ECh. 12.1 - Prob. 88ECh. 12.1 - Prob. 89ECh. 12.1 - Prob. 90ECh. 12.2 - CONCEPT CHECK Derivative Describe the relationship...Ch. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Differentiation of Vector-Valued FunctionsIn...Ch. 12.2 - Prob. 6ECh. 12.2 - Differentiation of Vector-Valued FunctionsIn...Ch. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Prob. 11ECh. 12.2 - Prob. 12ECh. 12.2 - Prob. 13ECh. 12.2 - Prob. 14ECh. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Higher-Order DifferentiationIn Exercises 1922,...Ch. 12.2 - Prob. 22ECh. 12.2 - Higher-Order DifferentiationIn Exercises 2326,...Ch. 12.2 - Prob. 24ECh. 12.2 - Higher-Order DifferentiationIn Exercises 2326,...Ch. 12.2 - Higher-Order DifferentiationIn Exercises 2326,...Ch. 12.2 - Prob. 27ECh. 12.2 - Prob. 28ECh. 12.2 - Finding Intervals on Which a Curve Is Smooth In...Ch. 12.2 - Prob. 30ECh. 12.2 - Finding Intervals on Which a Curve Is Smooth In...Ch. 12.2 - Prob. 32ECh. 12.2 - Prob. 33ECh. 12.2 - Prob. 34ECh. 12.2 - Prob. 35ECh. 12.2 - Prob. 36ECh. 12.2 - Using Two MethodsIn Exercises 37 and 38, find (a)...Ch. 12.2 - Prob. 38ECh. 12.2 - Finding an Indefinite Integral In Exercises 39-46,...Ch. 12.2 - Prob. 40ECh. 12.2 - Finding an Indefinite Integral In Exercises 39-46,...Ch. 12.2 - Prob. 42ECh. 12.2 - Prob. 43ECh. 12.2 - Prob. 44ECh. 12.2 - Prob. 45ECh. 12.2 - Prob. 46ECh. 12.2 - Prob. 47ECh. 12.2 - Prob. 48ECh. 12.2 - Prob. 49ECh. 12.2 - Prob. 50ECh. 12.2 - Prob. 51ECh. 12.2 - Evaluating a Definite Integral In Exercises 47-52,...Ch. 12.2 - Prob. 53ECh. 12.2 - Prob. 54ECh. 12.2 - Prob. 55ECh. 12.2 - Prob. 56ECh. 12.2 - Prob. 57ECh. 12.2 - Finding an Antiderivative In Exercises 53-58, find...Ch. 12.2 - Prob. 59ECh. 12.2 - Think About It Find two vector-valued functions...Ch. 12.2 - Prob. 61ECh. 12.2 - Prob. 62ECh. 12.2 - Prob. 63ECh. 12.2 - Prob. 64ECh. 12.2 - Prob. 65ECh. 12.2 - Prob. 66ECh. 12.2 - Prob. 67ECh. 12.2 - Prob. 68ECh. 12.2 - Prob. 69ECh. 12.2 - Particle MotionA particle moves in the yz-plane...Ch. 12.2 - Prob. 71ECh. 12.2 - Prob. 72ECh. 12.2 - Prob. 73ECh. 12.2 - True or False? In Exercises 73-76, determine...Ch. 12.2 - Prob. 75ECh. 12.2 - Prob. 76ECh. 12.3 - Prob. 1ECh. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Finding Velocity and Acceleration Along a Plane...Ch. 12.3 - Prob. 6ECh. 12.3 - Finding Velocity and Acceleration Along a Plane...Ch. 12.3 - Prob. 8ECh. 12.3 - Finding Velocity and Acceleration Along a Plane...Ch. 12.3 - Prob. 10ECh. 12.3 - Finding Velocity and Acceleration Vectors in Space...Ch. 12.3 - Prob. 12ECh. 12.3 - Finding Velocity and Acceleration Vectors in Space...Ch. 12.3 - Prob. 14ECh. 12.3 - Finding Velocity and Acceleration Vectors in Space...Ch. 12.3 - Prob. 16ECh. 12.3 - Finding Velocity and Acceleration Vectors in Space...Ch. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - Finding a Position Vector by Integration In...Ch. 12.3 - Prob. 22ECh. 12.3 - Prob. 23ECh. 12.3 - Prob. 24ECh. 12.3 - Prob. 25ECh. 12.3 - Prob. 26ECh. 12.3 - Prob. 27ECh. 12.3 - Prob. 28ECh. 12.3 - Prob. 29ECh. 12.3 - Prob. 30ECh. 12.3 - Prob. 31ECh. 12.3 - Prob. 32ECh. 12.3 - Prob. 33ECh. 12.3 - Prob. 34ECh. 12.3 - Prob. 35ECh. 12.3 - Prob. 36ECh. 12.3 - Prob. 37ECh. 12.3 - Prob. 38ECh. 12.3 - Prob. 39ECh. 12.3 - Prob. 40ECh. 12.3 - Prob. 41ECh. 12.3 - Prob. 42ECh. 12.3 - Prob. 43ECh. 12.3 - Prob. 44ECh. 12.3 - Prob. 45ECh. 12.3 - Prob. 46ECh. 12.3 - Prob. 47ECh. 12.3 - Prob. 48ECh. 12.3 - Prob. 49ECh. 12.3 - Prob. 50ECh. 12.3 - Circular Motion In Exercises 51 and 52, use the...Ch. 12.3 - Prob. 52ECh. 12.3 - Prob. 53ECh. 12.3 - Prob. 54ECh. 12.3 - Prob. 55ECh. 12.3 - Particle Motion Consider a particle moving on an...Ch. 12.3 - Prob. 57ECh. 12.3 - Prob. 58ECh. 12.3 - Prob. 59ECh. 12.3 - Prob. 60ECh. 12.3 - Prob. 61ECh. 12.3 - Prob. 62ECh. 12.3 - Prob. 63ECh. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Finding the Unit Tangent Vector In Exercises 3-8,...Ch. 12.4 - Prob. 4ECh. 12.4 - Finding the Unit Tangent Vector In Exercises 3-8,...Ch. 12.4 - Prob. 6ECh. 12.4 - Finding the Unit Tangent Vector In Exercises 3-8,...Ch. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Finding the Principal Unit Normal Vector In...Ch. 12.4 - Prob. 16ECh. 12.4 - Finding the Principal Unit Normal Vector In...Ch. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Circular MotionIn Exercises 3134, consider an...Ch. 12.4 - Prob. 33ECh. 12.4 - Prob. 34ECh. 12.4 - Prob. 35ECh. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.4 - Prob. 38ECh. 12.4 - Finding Tangential and Normal Components of...Ch. 12.4 - Prob. 40ECh. 12.4 - Prob. 41ECh. 12.4 - Prob. 42ECh. 12.4 - Prob. 43ECh. 12.4 - Prob. 44ECh. 12.4 - Prob. 45ECh. 12.4 - Prob. 46ECh. 12.4 - Prob. 47ECh. 12.4 - Prob. 48ECh. 12.4 - Prob. 49ECh. 12.4 - Prob. 50ECh. 12.4 - Prob. 51ECh. 12.4 - Prob. 52ECh. 12.4 - Prob. 53ECh. 12.4 - Prob. 54ECh. 12.4 - Prob. 55ECh. 12.4 - Prob. 56ECh. 12.4 - Prob. 57ECh. 12.4 - Prob. 58ECh. 12.4 - Prob. 59ECh. 12.4 - Prob. 60ECh. 12.4 - Prob. 61ECh. 12.4 - Prob. 62ECh. 12.4 - Prob. 63ECh. 12.4 - Prob. 64ECh. 12.4 - Prob. 65ECh. 12.4 - Prob. 66ECh. 12.4 - Prob. 67ECh. 12.4 - Prob. 68ECh. 12.4 - Prob. 69ECh. 12.4 - Prob. 70ECh. 12.4 - Prob. 71ECh. 12.4 - Prob. 72ECh. 12.4 - Prob. 73ECh. 12.4 - Prob. 74ECh. 12.4 - Prob. 75ECh. 12.4 - Prob. 76ECh. 12.5 - Curvature Consider points P and Q on a curve What...Ch. 12.5 - Arc Length Parameter Let r(t) be a space curse....Ch. 12.5 - Prob. 3ECh. 12.5 - Prob. 4ECh. 12.5 - Prob. 5ECh. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - Projectile Motion The position of a baseball. is...Ch. 12.5 - Prob. 10ECh. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Investigation Consider the graph of the...Ch. 12.5 - Prob. 18ECh. 12.5 - Prob. 19ECh. 12.5 - Prob. 20ECh. 12.5 - Prob. 21ECh. 12.5 - Prob. 22ECh. 12.5 - Prob. 23ECh. 12.5 - Prob. 24ECh. 12.5 - Prob. 25ECh. 12.5 - Prob. 26ECh. 12.5 - Finding CurvatureIn Exercises 2328, find the...Ch. 12.5 - Prob. 28ECh. 12.5 - Prob. 29ECh. 12.5 - Prob. 30ECh. 12.5 - Prob. 31ECh. 12.5 - Prob. 32ECh. 12.5 - Prob. 33ECh. 12.5 - Prob. 34ECh. 12.5 - Finding Curvature In Exercises 29-36, find the...Ch. 12.5 - Prob. 36ECh. 12.5 - Prob. 37ECh. 12.5 - Prob. 38ECh. 12.5 - Prob. 39ECh. 12.5 - Prob. 40ECh. 12.5 - Prob. 41ECh. 12.5 - Prob. 42ECh. 12.5 - Prob. 43ECh. 12.5 - Prob. 44ECh. 12.5 - Prob. 45ECh. 12.5 - Prob. 46ECh. 12.5 - Prob. 47ECh. 12.5 - Prob. 48ECh. 12.5 - Prob. 49ECh. 12.5 - Prob. 50ECh. 12.5 - Prob. 51ECh. 12.5 - Prob. 52ECh. 12.5 - Prob. 53ECh. 12.5 - Prob. 54ECh. 12.5 - Prob. 55ECh. 12.5 - Prob. 56ECh. 12.5 - Prob. 57ECh. 12.5 - Prob. 58ECh. 12.5 - Prob. 59ECh. 12.5 - Prob. 60ECh. 12.5 - Prob. 61ECh. 12.5 - Prob. 62ECh. 12.5 - Prob. 63ECh. 12.5 - Prob. 64ECh. 12.5 - Prob. 65ECh. 12.5 - Speed The smaller the curvature of a bend in a...Ch. 12.5 - Prob. 67ECh. 12.5 - Center of Curvature Use the result of Exercise 67...Ch. 12.5 - Prob. 69ECh. 12.5 - Prob. 70ECh. 12.5 - Prob. 71ECh. 12.5 - Prob. 72ECh. 12.5 - Prob. 73ECh. 12.5 - Prob. 74ECh. 12.5 - Prob. 75ECh. 12.5 - Prob. 76ECh. 12.5 - Curvature of a Cycloid Use the result of Exercise...Ch. 12.5 - Tangential and Normal Components of Acceleration...Ch. 12.5 - Prob. 79ECh. 12.5 - Prob. 80ECh. 12.5 - CurvatureVerify that the curvature at any point...Ch. 12.5 - Prob. 82ECh. 12.5 - Prob. 83ECh. 12.5 - Prob. 84ECh. 12.5 - Prob. 85ECh. 12.5 - Prob. 86ECh. 12.5 - Prob. 87ECh. 12.5 - Prob. 88ECh. 12.5 - Prob. 89ECh. 12.5 - Prob. 90ECh. 12.5 - Prob. 91ECh. 12.5 - Prob. 92ECh. 12.5 - Prob. 93ECh. 12.5 - Prob. 94ECh. 12 - Domain and Continuity In Exercises 1-4, (a) find...Ch. 12 - Prob. 2RECh. 12 - Domain and Continuity In Exercises 1-4, (a) find...Ch. 12 - Domain and Continuity In Exercises 1-4, (a) find...Ch. 12 - Prob. 5RECh. 12 - Prob. 6RECh. 12 - Prob. 7RECh. 12 - Prob. 8RECh. 12 - Prob. 9RECh. 12 - Prob. 10RECh. 12 - Sketching a Curve In Exercises 9-12, sketch the...Ch. 12 - Sketching a Curve In Exercises 9-12, sketch the...Ch. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Representing a Graph by a Vector-Valued Function...Ch. 12 - Representing a Graph by a Vector-Valued Function...Ch. 12 - Prob. 17RECh. 12 - Finding a Limit In Exercises 17 and 18, find the...Ch. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Higher-Order Differentiation In Exercise 21 and...Ch. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Finding Intervals on Which a Curve is SmoothIn...Ch. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Prob. 34RECh. 12 - Prob. 35RECh. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - Prob. 38RECh. 12 - Prob. 39RECh. 12 - Prob. 40RECh. 12 - Prob. 41RECh. 12 - Projectile Motion In Exercises 41 and 42, use the...Ch. 12 - Finding the Unit Tangent Vector In Exercises 43...Ch. 12 - Prob. 44RECh. 12 - Prob. 45RECh. 12 - Prob. 46RECh. 12 - Prob. 47RECh. 12 - Prob. 48RECh. 12 - Prob. 49RECh. 12 - Prob. 50RECh. 12 - Prob. 51RECh. 12 - Prob. 52RECh. 12 - Prob. 53RECh. 12 - Finding Tangential and Normal Components of...Ch. 12 - Prob. 55RECh. 12 - Prob. 56RECh. 12 - Prob. 57RECh. 12 - Prob. 58RECh. 12 - Prob. 59RECh. 12 - Prob. 60RECh. 12 - Prob. 61RECh. 12 - Prob. 62RECh. 12 - Prob. 63RECh. 12 - Prob. 64RECh. 12 - Finding CurvatureIn Exercises 6366, find the...Ch. 12 - Finding CurvatureIn Exercises 6366, find the...Ch. 12 - Finding Curvature In Exercises 67 and 68, find the...Ch. 12 - Prob. 68RECh. 12 - Prob. 69RECh. 12 - Prob. 70RECh. 12 - Prob. 71RECh. 12 - Prob. 72RECh. 12 - Prob. 73RECh. 12 - Cornu Spiral The cornu spiral is given by...Ch. 12 - Prob. 2PSCh. 12 - Prob. 3PSCh. 12 - Prob. 4PSCh. 12 - Cycloid Consider one arch of the cycloid...Ch. 12 - Prob. 6PSCh. 12 - Prob. 7PSCh. 12 - Prob. 8PSCh. 12 - Binormal VectorIn Exercises 911, use the binormal...Ch. 12 - Prob. 10PSCh. 12 - Prob. 11PSCh. 12 - Prob. 12PSCh. 12 - Prob. 13PSCh. 12 - Ferris Wheel You want to toss an object to a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Sketch and describe the orientation of the curve given by the parametric equations x=2tandy=4t2+2,2t2.arrow_forwardWrite parametric equations for a cycloid traced by a point P on a circle of radius a as the circle rolls along the x -axis given that P is at a maximum when x=0.arrow_forwardA little help regarding curvature? I kept messing up the steps, not sure where did I go wrongarrow_forward
- Solve: b,c and d part (b) Give parametric equations for the tangent line to the curve C at the point with t = 1 (c) Set up, but do not evaluate, an integral giving the arc length of the curve C between the points (1, 1, 1) and (2, 4, 16). (d) Find the curvature of C at the point (1, 1, 1) using your preferred method. No need to simplify your answer.arrow_forwardA curve C is given by the polar equation r = f(θ). Show that the curvature K at the point (r, θ) isarrow_forwardAnswer all partsarrow_forward
- Formulate the equation then evaluate. Image 2 is a reference and may be helpfularrow_forwardFind the unit tangent vector T(t). r(t) = (7 cos t, 7 sin t, 6), () -| Find a set of parametric equations for the line tangent to the space curve at point P. (Enter your answers as a comma-separated list. Use t for the variable of parameterization.)arrow_forwardA- Find the point on the curve r(t) = (5 sin t)i + (5 cos t)j + 12tk at a distance 26 units along the curve from the point (0,5,0) in the direction of increasing arc length. B- Find the curvature for the following vector functions. r(t) =arrow_forward
- The vector function r(t) (5 – 2 sin t) i + (3+ 2 cos t) j + 2 k - traces out a circle in 3-space as t varies. In which plane does this circle lie? 1. plane x 2. plane y 2 3. plane z = -2 4. plane z = 2 5. plane x = -2 6. plane y = -2arrow_forwardConsider the vector function given below. r(t) = 7t, 5 cos(t), 5 sin(t) (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t) = N(t) (b) Use the formula ?(t) = |T ′(t)| |r ′(t)| to find the curvature. ?(t) =arrow_forwardr(t) = Find the curvature when t = 0.5. Enter your answer in decimal form below, rounded off to two decimal places. QUESTION 6 r(t) = (21, 12) Find the unit tangent vector, T(t), when t = 0.25. Enter the y coordinate of the vector in space below as a decimal, rounded off to two decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY