Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.15, Problem 82AAP
To determine
The density of the aluminum 2024 alloy of the metal-matrix composite.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A composite with a vinyl ester (VE) matrix contains 2 vol% CNTS with the following
characteristics: 1= 7 um, d= 50 nm, di = 4 nm, and EcCNT = 900 GPa. The modulus of the VE
matrix is 1.9 GPa.
%3D
c. Find the Major Poisson's ratio for this composite using strength of materials approach.
d. Find the in-plane shear modulus for this composite using strength of materials approach.
Question 5. A metal-matrix composite (MMC) is made of a 6061-Al alloy matrix and continuous boron fibers.
The boron fibers are produced with a 15.5 ụm diameter tungsten-wire core that is coated with boron to make a
final 107 µm diameter fiber. A unidirectional composite is made with 63 vol % of the boron fibers in the Al
6061 matrix. ASsuming the law of mixtures applies to isostrain conditions, calculate the tensile modulus of the
composite in the direction of the fibers. Data are Eß = 370 GPa, Ew = 410 GPa, and EAi = 70.4 GPa.
Calculate the density of a composite made with 35% Kevlar-49 fibers in an epoxy resin (ρ = 1.1 kg/m3, E = 2.5 GPa). For Kevlar-49, Ef = 131 GPa; density = 1440 kg/m3
Chapter 12 Solutions
Foundations of Materials Science and Engineering
Ch. 12.15 - Define a composite material with respect to a...Ch. 12.15 - Prob. 2KCPCh. 12.15 - What are some of the advantages of glass...Ch. 12.15 - Prob. 4KCPCh. 12.15 - Prob. 5KCPCh. 12.15 - What properties make carbon fibers important for...Ch. 12.15 - Prob. 7KCPCh. 12.15 - Prob. 8KCPCh. 12.15 - Prob. 9KCPCh. 12.15 - Prob. 10KCP
Ch. 12.15 - Prob. 11KCPCh. 12.15 - Prob. 12KCPCh. 12.15 - Prob. 13KCPCh. 12.15 - Prob. 14KCPCh. 12.15 - Prob. 15KCPCh. 12.15 - Describe the sheet-molding compound manufacturing...Ch. 12.15 - Prob. 17KCPCh. 12.15 - Prob. 18KCPCh. 12.15 - What are the basic raw materials for portland...Ch. 12.15 - What are the names, chemical formulas, and...Ch. 12.15 - List the five main ASTM types of portland cement...Ch. 12.15 - What is asphalt? Where is asphalt obtained?Ch. 12.15 - What are chemical composition ranges for asphalts?Ch. 12.15 - What does an asphalt mix consist of? What is the...Ch. 12.15 - Prob. 25KCPCh. 12.15 - What are the subrings of the annual growth rings...Ch. 12.15 - Prob. 27KCPCh. 12.15 - Prob. 28KCPCh. 12.15 - Prob. 29KCPCh. 12.15 - Prob. 30KCPCh. 12.15 - Prob. 31KCPCh. 12.15 - Prob. 32AAPCh. 12.15 - Prob. 33AAPCh. 12.15 - Prob. 34AAPCh. 12.15 - Prob. 35AAPCh. 12.15 - Prob. 36AAPCh. 12.15 - Prob. 37AAPCh. 12.15 - Prob. 38AAPCh. 12.15 - Prob. 39AAPCh. 12.15 - A unidirectional carbon fiberepoxy resin composite...Ch. 12.15 - Prob. 41AAPCh. 12.15 - Prob. 42AAPCh. 12.15 - Prob. 43AAPCh. 12.15 - Prob. 44AAPCh. 12.15 - Prob. 45AAPCh. 12.15 - If the tensile strength of the Kevlar 49 fibers is...Ch. 12.15 - Prob. 47AAPCh. 12.15 - Prob. 48AAPCh. 12.15 - Prob. 49AAPCh. 12.15 - Prob. 50AAPCh. 12.15 - Prob. 51AAPCh. 12.15 - What types of chemical reactions occur during the...Ch. 12.15 - Prob. 53AAPCh. 12.15 - Which component of portland cement hardens rapidly...Ch. 12.15 - Prob. 55AAPCh. 12.15 - Prob. 56AAPCh. 12.15 - Prob. 57AAPCh. 12.15 - Prob. 58AAPCh. 12.15 - Prob. 59AAPCh. 12.15 - Prob. 60AAPCh. 12.15 - Prob. 61AAPCh. 12.15 - Prob. 62AAPCh. 12.15 - Prob. 63AAPCh. 12.15 - Prob. 64AAPCh. 12.15 - Prob. 65AAPCh. 12.15 - Prob. 66AAPCh. 12.15 - Prob. 67AAPCh. 12.15 - Prob. 68AAPCh. 12.15 - Prob. 69AAPCh. 12.15 - What characteristics are desirable for the...Ch. 12.15 - Prob. 71AAPCh. 12.15 - Prob. 72AAPCh. 12.15 - Prob. 73AAPCh. 12.15 - Prob. 74AAPCh. 12.15 - Prob. 75AAPCh. 12.15 - Prob. 76AAPCh. 12.15 - Prob. 77AAPCh. 12.15 - Why does wood shrink much more in the transverse...Ch. 12.15 - A newly developed metal-matrix composite is made...Ch. 12.15 - Prob. 81AAPCh. 12.15 - Prob. 82AAPCh. 12.15 - Prob. 83AAPCh. 12.15 - Prob. 84AAPCh. 12.15 - Prob. 85AAPCh. 12.15 - Prob. 86AAPCh. 12.15 - Prob. 87SEPCh. 12.15 - Prob. 88SEPCh. 12.15 - Prob. 89SEPCh. 12.15 - Prob. 90SEPCh. 12.15 - Prob. 91SEPCh. 12.15 - Prob. 92SEPCh. 12.15 - (a) In Problem 12.94, if all three beams are to...Ch. 12.15 - Prob. 97SEPCh. 12.15 - Prob. 98SEPCh. 12.15 - Prob. 99SEPCh. 12.15 - Prob. 100SEPCh. 12.15 - Prob. 101SEPCh. 12.15 - Prob. 102SEPCh. 12.15 - Prob. 103SEPCh. 12.15 - Prob. 104SEPCh. 12.15 - In total hip replacement, most surgeons prefer a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is the tenacity in gf of a 3.2 tex fiber den that ruptures under a load of 94.8 gf ? Provide your answer with two decimal positions and no unit. Answer:arrow_forward(B) Composite consists of polyester as a matrix reinforced by glass fiber. If the composite have cross- sectional area is (250 mm') and stress of (50 MPa) is applied in this longitudinal direction. 1-Compute the weight fraction of fibers and matrix. 2-Compute the magnitude of the load carried by each of fiber and matrix phase. Note:- Modulus of Elasticity (GPa) Material Density (g/cm³) Polyester 1.38 3.4 Glass Fiber 2.58 69 Composite 2.1arrow_forwardAn aligned and continuous glass fiber-reinforced epoxy composite consisting of 55 vol% glass fibers has a cross-sectional area of 420 mm2. The composite is subjected to a longitudinal load of 61,300 N. Calculate the magnitude of the stress on matrix phase if the elastic moduli of the glass fiber and the epoxy are 165 GPa and 5.7 GPa, respectively.arrow_forward
- can you help me answer this question and explain the steps you took to get to the answer i am stuck between B and D as the answerarrow_forwardFor a glass/epoxy lamina with a 70% fiber volume fraction using the properties in the tables provided below (a) Find the ultimate tensile strength. (b) Find the minimum and critical fiber volume fractions related to (a). (c) Find the compressive strength when the matrix undergoes extension mode and when the matrix undergoes shear mode, which one controls the compressive failure? Property Axial modulus Transverse modulus Axial Poisson's ratio Transverse Poisson's ratio Shear modulus Axial tensile strength Axial compressive strength Transverse tensile strength Transverse compressive strength Shear strength Epoxy Glass Units 3.4 85 GPa 3.4 85 GPa 0.3 0.20 0.3 0.20 1.308 35.42 GPa 72 1550 MPa 102 1550 MPa 72 1550 MPa 102 1550 MPa 34 35 MPaarrow_forwardA continuous and aligned glass fiber-reinforced composite with modulus of elasticity of 55 GPa. The volume fiber fraction is 40 and the modulus of elasticity of the fiber is 75 GPa. Calculate the volume fraction of epoxy matrix if you know the modulus of elasticity of the modulus of elasticity of the matrix is 2.5 GPa and then determine the strain that is sustained by each phase under applied stress of 27 Mpa. (assume that the cross-section area is 150 mm2)arrow_forward
- A composite sample of carbon reinforced epoxy has dimensions of 12 in x 12 in x 0.25 in and mass of 1.8 lb. The carbon fibers have a modulus of elasticity of 50(106) lb/in² and a density of 0.069 lb/in³. The epoxy matrix has modulus of elasticity of 0.61(106) lb/in² and a density of 0.042 lb/in³. What is the volume fraction of (a) the carbon fibers and (b) the epoxy matrix in the sample? Assume there are no voids in the sample. What is the predicted value for the modulus of elasticity (c) in the longitudinal direction and (d) the perpendicular to the carbon fibers?arrow_forwardkindly help me with this problem choose the correct answerarrow_forwardi need the answer quicklyarrow_forward
- Glass fibres provide longitudinal reinforcement for a nylon material subject to tensile load. The fibre diameter is 20 μm and the volume fraction is 0.45. (Take Young’s modulus of glass fibres as 70 000 MPa and nylon as 2800 MPa)(i)Calculate the Young’s modulus of composite(ii)Determine the tensile strength in the glass fibre if the tensile strength of the composites and matrix is 14 MPa and 11.8 MPa, respectivelyarrow_forwardThe compressive strength of aramid fiber is about one-eighth of its tensile stress. Estimate the smallest diameter of a rod on which the aramid fiber can be wound without causing kinks, etc., on its compression side.arrow_forward3. The geometry of the reinforcing phase in a composite greatly determines the overall properties. Polycarbonate has a Modulus of Elasticity=2.2 GPa, Tensile Strength-62.5 MPa. Carbon Fiber has a Modulus of Elasticity=228 GPa, Tensile Strength=3.5 GPa. For a 40 vol% carbon fiber and a 60 vol% polycarbonate matrix composite, compute the Tensile Strength and Young's Modulus for the composite for the following situations. Assume longitudinal loading. a. Continuous and aligned fibers b. Discontinuous and aligned fibers with I> le where 1 = 101, (K = 1). c. Discontinuous and aligned fibers with I< le where I= 0.51, (K = 1). d. Which of these composites is the strongest? Which is the stiffest (has the highest Young's Modulus)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
composite-materials; Author: Tonya Coffey;https://www.youtube.com/watch?v=Vu6ik-bcKf4;License: Standard youtube license