a.
Find the regression line for the variables fracture toughness
Test whether there is enough evidence to conclude that the predictor variable mode-mixity angle is useful for predicting the value of the response variable fracture toughness.
a.
Answer to Problem 76SE
The regression line for the variables fracture toughness
There is sufficient evidence to conclude that the predictor variable mode-mixity angle is useful for predicting the value of the response variable fracture toughness.
Explanation of Solution
Given info:
The data represents the values of the variables fracture toughness
Calculation:
Linear regression model:
A linear regression model is given as
A linear regression model is given as
Regression:
Software procedure:
Step by step procedure to obtain regression equation using MINITAB software is given as,
- Choose Stat > Regression > Fit Regression Line.
- In Response (Y), enter the column of Fracture toughness.
- In Predictor (X), enter the column of Mode-mixity angle.
- Click OK.
The output using MINITAB software is given as,
From the MINITAB output, the regression line is
Thus, the regression line for the variables fracture toughness
Interpretation:
The slope estimate implies an increase in fracture toughness by 38.07
The test hypotheses are given below:
Null hypothesis:
That is, there is no useful relationship between the variables fracture toughness
Alternative hypothesis:
That is, there is useful relationship between the variables fracture toughness
T-test statistic:
The test statistic is,
From the MINITAB output, the test statistic is 3.84 and the P-value is 0.002.
Thus, the value of test statistic is 3.84 and P-value is 0.002.
Level of significance:
Here, level of significance is not given.
So, the prior level of significance
Decision rule based on p-value:
If
If
Conclusion:
The P-value is 0.002 and
Here, P-value is less than the
That is
By the rejection rule, reject the null hypothesis.
Thus, there is enough evidence to conclude that the predictor variable mode-mixity angle is useful for predicting the value of the response variable fracture toughness.
b.
Test whether there is enough evidence to conclude that the change in fracture toughness associated with 1 degree increase in mode-mixity angle is greater than 50
b.
Answer to Problem 76SE
There is no sufficient evidence to conclude that the change in fracture toughness associated with 1 degree increase in mode-mixity angle is greater than 50
Explanation of Solution
Calculation:
From the MINITAB output obtained in part (a), the slope coefficient of the regression equation is
Here,
Claim:
Here, the claim is that the true average change in the fracture toughness associated with 1 degree increase in mode-mixity angle is greater than 50
The test hypotheses are given below:
Null hypothesis:
That is, the average change in the fracture toughness associated with 1 degree increase in mode-mixity angle is less than or equal to 50
Alternative hypothesis:
That is, the average change in the fracture toughness associated with 1 degree increase in mode-mixity angle is greater than 50
Test statistic:
The test statistic is,
Degrees of freedom:
The number of concrete beams that are sampled is
The degrees of freedom is,
Thus, the degree of freedom is 14.
Level of significance:
Here, level of significance is not given.
So, the prior level of significance
Critical value:
Software procedure:
Step by step procedure to obtain the critical value using the MINITAB software:
- Choose Graph > Probability Distribution Plot choose View Probability > OK.
- From Distribution, choose ‘t’ distribution and enter 14 as degrees of freedom.
- Click the Shaded Area tab.
- Choose Probability Value and Right Tail for the region of the curve to shade.
- Enter the Probability value as 0.05.
- Click OK.
Output using the MINITAB software is given below:
From the output, the critical value is 1.761.
Thus, the critical value is
From the MINITAB output obtained in part (a), the estimate of error standard deviation of slope coefficient is
Test statistic under null hypothesis:
Under the null hypothesis, the test statistic is obtained as follows:
Thus, the test statistic is -1.2026.
Decision criteria for the classical approach:
If
Conclusion:
Here, the test statistic is -1.2026 and critical value is 1.761.
The t statistic is less than the critical value.
That is,
Thus, the decision rule is, failed to reject the null hypothesis.
Hence, the average change in the fracture toughness associated with 1 degree increase in mode-mixity angle is less than or equal to 50
Therefore, there is no sufficient evidence to conclude that the change in fracture toughness associated with 1 degree increase in mode-mixity angle is greater than 50
c.
Explain whether the new observations of the variable mode-mixity angle give more precise estimate of slope coefficient than the actual observations.
c.
Answer to Problem 76SE
No, the new observations of the variable mode-mixity angle do not give more precise estimate of slope coefficient than the actual observations.
Explanation of Solution
Given info:
The data represents the new values of the variable mode-mixity angle, at which the response variable fracture toughness is predicted.
Calculation:
Confidence interval:
The general formula for the confidence interval for the slope of the regression line is,
Where,
The precision of the confidence interval increases with the decrease in the error standard deviation of the slope.
That is, the precision will be high for lower value of
Error sum of square: (SSE)
The variation in the observed values of the response variable that is not explained by the regression is defined as the regression sum of squares. The formula for error sum of square is
Estimate of error standard deviation of slope coefficient:
The general formula for the estimate of error standard deviation of slope coefficient is,
The defining formula for
Here, the estimate of error standard deviation of slope coefficient depends on the value of
The estimate of error standard deviation of slope coefficient decreases with the increase in the value of
The margin of error is product of critical value and standard error of the statistic. The higher width of the confidence interval indicates larger standard error of statistic. Hence, the margin of error also increases.
Therefore, the width of the confidence interval decreases with the decrease in value of error standard deviation. In other words it can be said that the precision decreases with the decrease in the value of
The value of
1 | 16.52 | 272.9104 |
2 | 17.53 | 307.3009 |
3 | 18.05 | 325.8025 |
4 | 18.05 | 325.8025 |
5 | 22.39 | 501.3121 |
6 | 23.89 | 570.7321 |
7 | 25.50 | 650.25 |
8 | 24.89 | 619.5121 |
9 | 23.48 | 551.3104 |
10 | 24.98 | 624.0004 |
11 | 25.55 | 652.8025 |
12 | 25.90 | 670.81 |
13 | 22.65 | 513.0225 |
14 | 23.69 | 561.2161 |
15 | 24.15 | 583.2225 |
16 | 24.45 | 597.8025 |
Total |
Here,
Thus, the value of
Hence, the covariance is
The value of
1 | 16 | 256 |
2 | 16 | 256 |
3 | 18 | 324 |
4 | 18 | 324 |
5 | 20 | 400 |
6 | 20 | 400 |
7 | 20 | 400 |
8 | 20 | 400 |
9 | 22 | 484 |
10 | 22 | 484 |
11 | 22 | 484 |
12 | 22 | 484 |
13 | 24 | 576 |
14 | 24 | 576 |
15 | 26 | 676 |
16 | 26 | 676 |
Total |
Here,
Thus, the value of
Hence, the covariance is
The value of
That is,
Hence, the estimate of error standard deviation of slope coefficient is lower for old observations.
Therefore, the precision is high for old observations.
Thus, the new observations of the variable mode-mixity angle do not give more precise estimate of slope coefficient than the actual observations.
d.
Find the
Find the prediction interval of fracture toughness for a single sandwich panel of 18 degrees mode-mixity angle.
Find the interval estimate for the true mean fracture toughness of all sandwich panels with 22 degrees mode-mixity angle.
Find the prediction interval of fracture toughness for a single sandwich panel of 22 degrees mode-mixity angle.
d.
Answer to Problem 76SE
The 95% specified confidence interval for the true mean fracture toughness of all sandwich panels with 18 degrees mode-mixity angle is
The 95% prediction interval of fracture toughness for a single sandwich panel with 18 degrees mode-mixity angle is
The 95% specified confidence interval for the true mean fracture toughness of all sandwich panels with 22 degrees mode-mixity angle is
The 95% prediction interval of fracture toughness for a single sandwich panel with 22 degrees mode-mixity angle is
Explanation of Solution
Calculation:
Here, the regression equation is
Expected fracture toughness when the mode-mixity angle is 18 degrees:
The expected fracture toughness with 18 degrees mode-mixity angle is obtained as follows:
Thus, the expected fracture toughness with 18 degrees mode-mixity angle is 570.26.
95% confidence interval of true mean fracture tough for an angle of 18 degrees:
The general formula for the
Where,
From the MINITAB output in part (a), the value of the standard error of the estimate is
The value of
1 | 16.52 | 272.9104 |
2 | 17.53 | 307.3009 |
3 | 18.05 | 325.8025 |
4 | 18.05 | 325.8025 |
5 | 22.39 | 501.3121 |
6 | 23.89 | 570.7321 |
7 | 25.50 | 650.25 |
8 | 24.89 | 619.5121 |
9 | 23.48 | 551.3104 |
10 | 24.98 | 624.0004 |
11 | 25.55 | 652.8025 |
12 | 25.90 | 670.81 |
13 | 22.65 | 513.0225 |
14 | 23.69 | 561.2161 |
15 | 24.15 | 583.2225 |
16 | 24.45 | 597.8025 |
Total |
Here,
The mean mode-mixity angle is,
Thus, the mean mode-mixity angle is
Covariance term
Thus, the value of
Hence, the covariance is
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 14 degrees of freedom is 2.145.
Thus, the critical value is
The 95% confidence interval is,
Thus, the 95% specified confidence interval for the true mean fracture toughness of all sandwich panels with 18 degrees mode-mixity angle is
Interpretation:
There is 95% confident that, the true mean fracture toughness of all sandwich panels with 18 degrees mode-mixity angle lies between 453.6507 and 686.8693.
95% prediction interval of fracture tough for an angle of 18 degrees:
Prediction interval for a single future value:
Prediction interval is used to predict a single value of the focus variable that is to be observed at some future time. In other words it can be said that the prediction interval gives a single future value rather than estimating the mean value of the variable.
The general formula for
where
The 95% prediction interval is,
Thus, the 95% prediction interval of fracture toughness for a single sandwich panel with 18 degrees mode-mixity angle is
Interpretation:
For repeated samples, there is 95% confident that the fracture toughness for a single sandwich panel with 18 degrees mode-mixity angle lies between 285.5331 and 854.9569.
Expected fracture toughness when the mode-mixity angle is 22 degrees:
The expected fracture toughness with 22 degrees mode-mixity angle is obtained as follows:
Thus, the expected fracture toughness with 22 degrees mode-mixity angle is 722.54.
95% confidence interval of true mean fracture tough for an angle of 22 degrees:
The 95% confidence interval is,
Thus, the 95% specified confidence interval for the true mean fracture toughness of all sandwich panels with 22 degrees mode-mixity angle is
Interpretation:
There is 95% confident that, the true mean fracture toughness of all sandwich panels with 22 degrees mode-mixity angle lies between 656.3689 and 788.7111.
95% prediction interval of fracture tough for an angle of 22 degrees:
The 95% prediction interval is,
Thus, the 95% prediction interval of fracture toughness for a single sandwich panel with 22 degrees mode-mixity angle is
Interpretation:
For repeated samples, there is 95% confident that the fracture toughness for a single sandwich panel with 22 degrees mode-mixity angle lies between 454.491 and 990.589.
Want to see more full solutions like this?
Chapter 12 Solutions
Probability and Statistics for Engineering and the Sciences
- Eyeglassomatic manufactures eyeglasses for different retailers. They test to see how many defective lenses they made in a time period. Table #4.2.2 gives the defect and the number of defects. Table #4.2.2: Number of Defective Lenses Defect type Number of defects Scratch 5865 Right shaped – small 4613 Flaked 1992 Wrong axis 1838 Chamfer wrong 1596 Crazing, cracks 1546 Wrong shape 1485 Wrong PD 1398 Spots and bubbles 1371 Wrong height 1130 Right shape – big 1105 Lost in lab 976 Spots/bubble – intern 976 Find the probability of picking a lens that is scratched or flaked. Find the probability of picking a lens that is the wrong PD or was lost in lab. Find the probability of picking a lens that is not scratched. Find the probability of picking a lens that is not the wrong shape.arrow_forward.... At wind speeds above 1000 centimeters per second (cm/sec), significant sand-moving events begin to occur. Wind speeds below 1000 cm/sec deposit sand and wind speeds above 1000 cm/sec move sand to new locations. The cyclic nature of wind and moving sand determines the shape and location of large dunes. At a test site, the prevailing direction of the wind did not change noticeably. However, the velocity did change. Sixty-two wind speed readings gave an average velocity of x = 1075 cm/sec. Based on long-term experience, o can be assurhed to be 250 cm/sec. (a) Find a 95% confidence interval for the population mean wind speed at this site. (Round your answers to the nearest whole number.) lower limit cm/sec upper limit cm/sec (b) Does the confidence interval indicate that the population mean wind speed is such that the sand is always moving at this site? Explain. O No. This interval Indicates that the population mean wind speed is such that the sand may not always be moving at this…arrow_forwardThe following are the weight losses of certain machine parts due to friction (in milligrams) when used with three different lubricants: Lubricant 1: 13 11 10 13 Lubricant 2: 9. 11 Lubricant 3: 7 6. Test at the 0,01 level of significance whether the type of lubricant effects the weight loss of the machine parts due to friction. While carrying out the test, follow the steps below and answer the questions. 1- Determine the null and alternative hypotheses. Ho: H: 2-Fill in the following ANOVA Table. ANOVA Table Source of Variation Degrees of Freedom Sum of Squares Mean Sum of Squares Treatment Error Total 3-State your decision and conclusion.arrow_forward
- An experiment to compare the tension bond strength of polymer latex modified mortar (Portland cement mortar to which polymer latex emulsions have been added during mixing) to that of unmodified mortar resulted in x = 18.19 kgf/cm? for the modified mortar (m = 42) and y = 16.85 kgf/cm? for the unmodified mortar (n = 30). Let u, and u, be the true average tension bond strengths for the modified and unmodified mortars, respectively. Assume that the bond strength distributions are both normal. Assuming that o, = 1.6 and o, = 1.3, test Hn: 4, - H, = 0 versus H: u, - u, > 0 at level 0.01. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) P-value = Compute the probability of a type II error for the test of part (a) when 4 - Hz = 1. (Round your answer to four decimal places.) Suppose the investigator decided to use a level 0.05 test and vwished B = 0.10 when u, - uz = 1. If m = 42, what value of n…arrow_forwardAn experiment to compare the tension bond strength of polymer latex modified mortar (Portland cement mortar to which polymer latex emulsions have been added during mixing) to that of unmodified mortar resulted in x = 18.13 kgf/cm? for the modified mortar (m = 42) and y = 16.85 kgf/cm2 for the unmodified mortar (n = 32). Let u, and u, be the true average tension bond strengths for the modified and unmodified mortars, respectively. Assume that the bond strength distributions are both normal. (a) Assuming that o, = 1.6 and o, = 1.3, test Ho: 4, - H, = 0 versus H: u, - µ, > 0 at level 0.01. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your p-value to four decimal places.) z = 3.80 P-value = 0.0001 State the conclusion in the problem context. O Fail to reject H,. The data suggests that the difference in average tension bond strengths exceeds 0. O Fail to reject Ho: The data does not suggest that the difference in average…arrow_forwardAn article in the ACI Materials Journal (Vol. 84, 1987, pp. 213-216) describes several experiments investigating the rodding of concrete to remove trapped air. A 3-inch x 6-inch cylinder was used, and the number of times this rod was used is the design variable. The resulting compressive strength of the concrete specimen is the response. The data are shown in the following table. ... Compressive Strength (psi) Rodding Level Observations 10 1530 1530 1440 15 1610 1650 1500 20 1560 1730 1530 25 1500 1490 1510 Calculate the test statistic fo. Input answer up to 2 decimal places. Test Statisticf =1.68 Blank 1 1.68arrow_forward
- 5. The compressive strength of concrete (in kg/m) is being tested b y two civil engineers. The first engineer tests ten specimens and obtains the following data: 2000 2100 2050 2150 2200 2050 2000 2100 2250 2000 While the following data is obtained by the second engineer who tests eight specimens: 2000 2200 2050 2150 2250 2100 2250 2150 The compressive strength of concrete is assumed to be normally distributed. Construct a 90% confidence interval for the ratio of standard deviation of compressive strength of all concretes.[(0.505,1.757) [ref:T2S20708] 6. A new teaching method to improve the failing rate if English SPM papers is being considered. The existing and new teaching method were applied to samples of students so as to determine whether the new teaching method improves the proportion of students who failed in their English papers. 1425 of 1500 students who were taught based on the existing teaching method and 1920 of 2000 students who were taught based on the new teaching method…arrow_forwardAs part of an investigation into the collapse of the roof of a building, a testing laboratory is given all the available bolts that connected the steel structure at 3 different positions on the roof. The forces required to shear each of these bolts (coded values) are shown in Table Q4. Construct a hypothesis and perform an analysis to test whether the differences among the sample means at the 3 positions are significant at the 0.05 level of significance.arrow_forwardThe following table shows the typical depth (rounded to the nearest foot) for nonfailed wells in geological formations in Baltimore County (The Journal of Data Science, 2009, Vol. 7, pp. 111-127). Geological Formation Group Number of Nonfailed Wells Nonfailed Well Depth Gneiss 1,515 255 Granite 26 218 Loch Raven Schist 3,290 317 Mafic 349 231 Marble 280 267 Prettyboy Schist 1,343 255 Other schists 887 267 Serpentine 36 217 Total 7,726 2,027 Let the random variable X denote the depth (rounded to the nearest foot) for nonfailed wells. Detemine the cumulative distribution function for X. Round your answers to four decimal places (e.g. 98.7654). x < 217 217arrow_forwardNeed help with part d.arrow_forwardThe Etruscans. Anthropologists are still trying to unravel the mystery of the origins of the Etruscan empire, a highly advanced Italic civilization formed around the eighth century B.C. in central Italy. Were they native to the Italian peninsula or, as many aspects of their civilization suggest, did they migrate from the East by land or sea? The maximum head breadth, in millimeters, of 70 modern Italian male skulls and 84 preserved Etruscan male skulls was analyzed to help researchers decide whether the Etruscans were native to Italy. The resulting data can be found on the WeissStats site. [SOURCE: N. Barnicot and D. Brothwell, “The Evaluation of Metrical Data in the Comparison of Ancient and Modern Bones.” In Medical Biology and Etruscan Origins, G. Wolstenholme and C. O’Connor, eds., Little, Brown&Co., 1959] a. Obtain normal probability plots, boxplots, and the standard deviations for the two samples. b. Based on your results from part (a), which would you be inclined to use to…arrow_forwardQ.2. Because of potential variability in aging due to different castings and segments on the castings, a Latin square design with N=7 was used to investigate the effect of heat treatment on aging. With A= castings, B = Σχ = 297,216.90, segments, C = heat treatments, summary statistics include x... = 3815.8, Σχ = 297,155.01, and 297,200.64, = 297,317.65. Obtain the ANOVA table and test at level .05 the hypothesis that heat treatment has no effect on aging.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman