Concept explainers
(a)
The values of
(a)
Answer to Problem 57PQ
The values of
Explanation of Solution
Write the equation of angular speed of the wheel.
Here,
Write the expression for angular velocity.
Here,
Compare equation (I) and (II).
Conclusion:
Substitute
Substitute
Take natural logarithms on both the side of the equation.
Therefore, the values of
(b)
The magnitude of the
(b)
Answer to Problem 57PQ
The magnitude of the angular acceleration of the disk at
Explanation of Solution
Write the expression for angular acceleration.
Here,
Substitute equation (III) in the equation (IV).
Conclusion:
Substitute
Write the magnitude of the angular acceleration.
Therefore, the magnitude of the angular acceleration of the disk at
(c)
The revolution of the disk during the time interval
(c)
Answer to Problem 57PQ
The revolution of the disk during the time interval
Explanation of Solution
Rewrite the expression (II) for angular displacement.
Here,
Integrating the equation (VI) using the limits.
Substitute equation (III) in the above equation.
Conclusion:
Substitute
Convert the radians to revolutions.
Therefore, the revolution of the disk during the time interval
Want to see more full solutions like this?
Chapter 12 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?arrow_forwardA rotating objects angular position is given by (t) = (1.54t2 7.65t + 2.75) rad, where t is measured in seconds. Find a. the objects angular speed when t = 3.50 s and b. the magnitude of the angular acceleration when t = 3.50 s.arrow_forwardA wheel 1.0 m in diameter rotates with an angular acceleration of 4.0rad/s2 . (a) If the wheel’s initial angular velocity is 2.0 rad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?arrow_forward
- Suppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth during this period? (c) What force tangent to Earth at its equator would produce this torque?arrow_forwardA ball rolls to the left along a horizontal surface, up the slope, and then continues along a horizontal surface (Fig. P12.70). Sketch the angular speed and the magnitude of the angular acceleration of the ball as functions of time. FIGURE P12.70arrow_forwardStarting from rest, a wheel reaches an angular speed of 15.0 rad/s in 5.00 s. a. What is the magnitude of the constant angular acceleration of the wheel? b. Through what angle in radians does the wheel rotate during this time interval?arrow_forward
- A centrifuge used for training astronauts rotating at 0.810 rad/s is spun up to 1.81 rad/s with an angular acceleration of 0.050 rad/s2. a. What is the magnitude of the angular displacement that the centrifuge rotates through during this increase in speed? b. If the initial and final speeds of the centrifuge were tripled and the angular acceleration remained at 0.050 rad/s2, what would be the factor by which the result in part (a) would change?arrow_forwardA rotating objects angular position is given by (t) = (1.54t2 7.65t + 2.75) rad, where t is measured in seconds. a. When is the object momentarily at rest? b. What is the magnitude of the angular acceleration at that time?arrow_forwardA cam of mass M is in the shape of a circular disk of diameter 2R with an off-center circular hole of diameter R is mounted on a uniform cylindrical shaft whose diameter matches that of the hole (Fig. P1 3.78). a. What is the rotational inertia of the cam and shaft around the axis of the shaft? b. What is the rotational kinetic energy of the cam and shaft if the system rotates with angular speed around this axis?arrow_forward
- A shaft is turning at 65.0 rad/s at time t = 0. Thereafter, its angular acceleration is given by =10.05.00t where is in rad/s2 and t is in seconds. (a) Find the angular speed of the shaft at t = 3.00 s. (b) Through what angle does it turn between t = 0 and t = 3.00 s?arrow_forwardA disk is initially at rest. A penny is placed on it at a distance of 1.0 m from the rotation axis. At time t = 0 s, the disk begins to rotate with a constant angular acceleration of 2.0 rad/s2 around a fixed, vertical axis through its center and perpendicular to its plane. Find the magnitude of the net acceleration of the coin at t = 1.5 s.arrow_forwardLara is running just outside the circumference of a carousel, looking for her favorite horse to ride, with a constant angular speed of 1.00 rad/s. Just as she spots the horse, one-fourth of the circumference ahead of her, the carousel begins to move, accelerating from rest at 0.050 rad/s2. a. Taking the time when the carousel begins to move as t = 0, when will Lara catch up to the horse? b. Lara mistakenly passes the horse and keeps running at constant angular speed. If the carousel continues to accelerate at the same rate, when will the horse draw even with Lara again?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College