Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 42PQ
To determine
The screwdriver that should be used to make the job easier and the quantity that directly applies in describing why the job is easier.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A lawn mower has a flat, rod-shaped steel blade that rotates about its center.
The mass of the blade is 0.65 kg and its length is 0.55 m. You may want to
review (Pages 314 - 318).
Part A
What is the rotational energy of the blade at its operating angular speed of 3460 rpm ?
Express your answer using two significant figures.
Kr=
Submit
Part B
v
Templates Symbols undo redo reset keyboard shortcuts help
y =
Request Answer
If all of the rotational kinetic energy of the blade could be converted to gravitational potential energy, to what height would the blade rise?
Express your answer using two significant figures.
J
Templates Symbols undo redo reset keyboard shortcuts help
m
A rotating door is made from four rectangular glass panes, as shown in the figure. The mass of each pane is 50.8 kg. A person pushes on
the outer edge of one pane with a force of F = 87.8 N that is directed perpendicular to the pane. Determine the magnitude of the door's
angular acceleration.
Number i
Units
1.2 m
F
1.2 m
Concept Simulation 8.1 reviews the concept that plays the central role in this problem. The warranty on a new
tire says that an automobile can travel for a distance of 99300 km before the tire wears out. The radius of the
tire is 0.342 m. How many revolutions does the tire make before wearing out?
Number i
Units
Chapter 12 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 12.1 - Figure 12.5 shows two rotating objects. Indicate...Ch. 12.2 - Prob. 12.2CECh. 12.2 - Prob. 12.3CECh. 12.2 - Prob. 12.4CECh. 12.2 - Prob. 12.5CECh. 12.5 - For each exercise shown in Figure 12.22, how does...Ch. 12 - Often, we model the Moon as a particle in a...Ch. 12 - Suppose a satellite orbits the Earth such that it...Ch. 12 - Prob. 3PQCh. 12 - Prob. 4PQ
Ch. 12 - A ceiling fan is rotating counterclockwise with a...Ch. 12 - As seen from above the Earths North Pole, the...Ch. 12 - A rotating objects angular position is given by...Ch. 12 - A rotating objects angular position is given by...Ch. 12 - Jupiter rotates about its axis once every 9 hours...Ch. 12 - Prob. 10PQCh. 12 - Prob. 11PQCh. 12 - Prob. 12PQCh. 12 - Prob. 13PQCh. 12 - Prob. 14PQCh. 12 - Prob. 15PQCh. 12 - A disk rolls up an inclined plane as shown in...Ch. 12 - Jeff, running outside to play, pushes on a...Ch. 12 - A potters wheel rotating at 240 rev/min is...Ch. 12 - Friction in an old clock causes it to lose 1...Ch. 12 - A wheel starts from rest and in 12.65 s is...Ch. 12 - Prob. 21PQCh. 12 - Starting from rest, a wheel reaches an angular...Ch. 12 - A potters wheel is rotating with an angular...Ch. 12 - The angular speed of a wheel is given by (t) =...Ch. 12 - Prob. 25PQCh. 12 - Prob. 26PQCh. 12 - An electric food processor comes with many...Ch. 12 - Prob. 28PQCh. 12 - A bicyclist is testing a new racing bike on a...Ch. 12 - Prob. 30PQCh. 12 - A disk is initially at rest. A penny is placed on...Ch. 12 - Prob. 32PQCh. 12 - Consider again the two wind turbines in Problem...Ch. 12 - Consider again the two wind turbines in Problem...Ch. 12 - In testing an automobile tire for proper...Ch. 12 - Prob. 36PQCh. 12 - A merry-go-round at a childrens park begins at...Ch. 12 - A wheel rotating at a constant rate of 1850...Ch. 12 - Why are doorknobs placed on the edge opposite the...Ch. 12 - Prob. 40PQCh. 12 - Prob. 41PQCh. 12 - Prob. 42PQCh. 12 - A wheel of inner radius r1 = 15.0 cm and outer...Ch. 12 - A uniform plank 6.0 m long rests on two supports,...Ch. 12 - Prob. 45PQCh. 12 - Prob. 46PQCh. 12 - Prob. 47PQCh. 12 - Prob. 48PQCh. 12 - Prob. 49PQCh. 12 - Prob. 50PQCh. 12 - Prob. 51PQCh. 12 - Given a vector A=4.5+4.5j and a vector B=4.5+4.5j,...Ch. 12 - A square plate with sides 2.0 m in length can...Ch. 12 - Prob. 54PQCh. 12 - A disk with a radius of 4.5 m has a 100-N force...Ch. 12 - Disc jockeys (DJs) use a turntable in applying...Ch. 12 - Prob. 57PQCh. 12 - Prob. 58PQCh. 12 - A wheel initially rotating at 85.0 rev/min...Ch. 12 - Prob. 60PQCh. 12 - A centrifuge used for training astronauts rotating...Ch. 12 - Problems 62 and 63 are paired. 62. C A disk is...Ch. 12 - Prob. 63PQCh. 12 - A potters wheel rotates with an angular...Ch. 12 - Prob. 65PQCh. 12 - Prob. 66PQCh. 12 - Prob. 67PQCh. 12 - Lara is running just outside the circumference of...Ch. 12 - The propeller of an aircraft accelerates from rest...Ch. 12 - A ball rolls to the left along a horizontal...Ch. 12 - Three forces are exerted on the disk shown in...Ch. 12 - Consider the disk in Problem 71. The disks outer...Ch. 12 - Prob. 73PQCh. 12 - Prob. 74PQCh. 12 - Prob. 75PQCh. 12 - Prob. 76PQCh. 12 - Prob. 77PQCh. 12 - Prob. 78PQCh. 12 - Prob. 79PQCh. 12 - Prob. 80PQCh. 12 - If the rod in Problem 79 is in equilibrium, what...Ch. 12 - As a compact disc (CD) spins clockwise as seen...Ch. 12 - A disk-shaped machine part has a diameter of 40.0...Ch. 12 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cam of mass M is in the shape of a circular disk of diameter 2R with an off-center circular hole of diameter R is mounted on a uniform cylindrical shaft whose diameter matches that of the hole (Fig. P1 3.78). a. What is the rotational inertia of the cam and shaft around the axis of the shaft? b. What is the rotational kinetic energy of the cam and shaft if the system rotates with angular speed around this axis?arrow_forwardA parent exerts a torque on a merry-go-round at a park. The torque has a magnitude given by =322+120145, where the torque has units of newton meters when is in units of radians. a. How much work is performed by the torque as the merry-go-round rotates through 1.75 revolutions, beginning at i=0? b. If it takes the merry-go-round 4.51 s to go through the 1.75 revolutions, what is the power transferred by the parent to the ride?arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Parrow_forwardA large wind turbine (typical of the size and specifications of a turbine that you see in a modern wind farm) has three blades connected to a central hub. The blades are 50 m long and rotate at 10 rpm. What angular speed ω and angular acceleration at the tip of a blade?arrow_forwardPlease Helparrow_forward
- Velocity Task Introduction: The pedal of a bicycle is attached to a crank arm that revolves when the pedal is pushed by a person's foot. As the crank arm turns, it pulls a chain that is attached to the rear wheel of the bicycle, causing the bicycle to move forward. C 1 18 cm 16 cm A particular bicycle has wheels that are 66 cm in diameter. The radius of the crank arm is 18 cm. At its lowest point, the pedal is 16 cm'above the ground. A person is pedaling the bicycle such that the crank arm rotates once every second. Questions: 1. Write an equation that models the vertical position of the foot with respect to the ground, starting from the lowest point, as the crank arm turns. 2. What is the rate of change of the vertical position of the foot when it is at the midline? Explain your answer 3. How fast, in kilometres per hour, is the bicycle moving? 4. Determine an equation that would model the foot's position when the cyclist is traveling 5 km/h. Compare this equation to your equation…arrow_forward1. The pulley system below has a 4 to 1 mechanical advantage; for this problem you can assume an ideal pulley system with massless, frictionless pulleys. Suppose you use this pulley system to lift a 25 kg mass up 30 cm at a constant speed. A. What is the tension in the rope? B. How far will you have to pull the rope? F Narrow_forwardA small rubber wheel is used to drive a large pottery wheel. The two wheels are mounted so that their circular edges touch. The small wheel has a radius of 2.5 cm and accelerates at the rate of 6.2 rad/s^2 , and it is in contact with the pottery wheel (radius 26.0 cm ) without slipping. A.)Calculate the angular acceleration of the pottery wheel. Express your answer using two significant figures. B.)Calculate the time it takes the pottery wheel to reach its required speed of 62 rpm . Express your answer to two significant figures and include the appropriate units.arrow_forward
- Most of the motion generated by joints in the human body are examples of levers. An example of a third class lever is the forearm; the force which generates the motion is located in-between the pivot point and the resistance force. The elbow acts as the pivot point, the biceps muscle pulls up on the forearm to move the mass which is held in the hand. Imagine someone is holding an object in her hand with her forearm horizontal and her upper arm vertical so her elbow creates a 90° angle. If her biceps attach to her forearm 0.0511 m from the elbow and make an angle of 26.0° with the vertical while a 2.76 kg mass is held in her hand 29.89 cm from the elbow, what force F is exerted by the biceps muscle? Ignore the mass of the forearm. F =arrow_forwardA grinding wheel 0.40 m in diameter rotates at 2500 rpm. mView?assignmentProblemID-178465338 Part A Calculate its angular velocity in rad/s. Express your answer using three significant figures. = ليا Submit Part B V= 15| ΑΣΦ Request Answer Submit What is the linear speed of a point on the edge of the grinding wheel? Express your answer to two significant figures and include the appropriate units. μA Value Request Answer Units Pearson ? ? rad/s Copyright © 2022 Pearson Education Inc. All rights reserved. | Terms of Use | Privacy Policy | Permissions | Contact Us | 0 Nov 2arrow_forwardMost of the motion generated by joints in the human body are examples of levers. An example of a third class lever is the forearm; the force which generates the motion is located in-between the pivot point and the resistance force. The elbow acts as the pivot point, the biceps muscle pulls up on the forearm to move the mass which is held in the hand. Imagine someone is holding an object in her hand with her forearm horizontal and her upper arm vertical so her elbow creates a 90° angle. If her biceps attach to her forearm 0.0640 m from the elbow and make an angle of 28.0° with the vertical while a 3.14 kg mass is held in her hand 28.60 cm from the elbow, what force F is exerted by the biceps muscle? Ignore the mass of the forearm. F = Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY