
Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112280
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 41RE
To determine
To find: The corresponding cylindrical and rectangular coordinates for the given spherical coordinates.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one.
A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The
wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture.
A
B
A
B
at some instant, the piston will be tangent to the circle
(a) Express the x and y coordinates of point A as functions of t:
x= 2 cos(3πt)
and y= 2 sin(3t)
(b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds:
-cot(3πt)
sin(3лt)
(c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +411-
4
-2 sin (3лt)
(d)…
5. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.AE.003.
y
y= ex²
0
Video Example
x
EXAMPLE 3
(a) Use the Midpoint Rule with n = 10 to approximate the integral
कर
L'ex²
dx.
(b) Give an upper bound for the error involved in this approximation.
SOLUTION
8+2
1
L'ex² d
(a) Since a = 0, b = 1, and n = 10, the Midpoint Rule gives the following. (Round your answer to six decimal places.)
dx Ax[f(0.05) + f(0.15) + ... + f(0.85) + f(0.95)]
0.1 [0.0025 +0.0225
+
+ e0.0625 + 0.1225
e0.3025 + e0.4225
+ e0.2025
+
+ e0.5625 €0.7225 +0.9025]
The figure illustrates this approximation.
(b) Since f(x) = ex², we have f'(x)
=
0 ≤ f'(x) =
< 6e.
ASK YOUR TEACHER
and f'(x) =
Also, since 0 ≤ x ≤ 1 we have x² ≤
and so
Taking K = 6e, a = 0, b = 1, and n = 10 in the error estimate, we see that an upper bound for the error is as follows. (Round your final
answer to five decimal places.)
6e(1)3
e
24(
=
≈
2. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.015.
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.)
ASK YOUR TEACHER
3
1
3 +
dy, n = 6
(a) the Trapezoidal Rule
(b) the Midpoint Rule
(c) Simpson's Rule
Need Help? Read It
Watch It
Chapter 12 Solutions
Essential Calculus: Early Transcendentals
Ch. 12.1 - (a) Estimate the volume of the solid that lies...Ch. 12.1 - If R = [0, 4] [1, 2], use a Riemann sum with m =...Ch. 12.1 - (a) Use a Riemann sum with m = n = 2 to estimate...Ch. 12.1 - (a) Estimate the volume of the solid that lies...Ch. 12.1 - A 20-ft-by-30-ft swimming pool is filled with...Ch. 12.1 - A contour map is shown for a function f on the...Ch. 12.1 - 79 Evaluate the double integral by first...Ch. 12.1 - 7-9 Evaluate the double integral by first...Ch. 12.1 - Evaluate the double integral by first identifying...Ch. 12.1 - The integral R9y2dA, where R = [0, 4] [0, 2],...
Ch. 12.1 - Calculate the iterated integral. 15....Ch. 12.1 - Calculate the iterated integral. 12....Ch. 12.1 - 1120 Calculate the iterated integral. 13....Ch. 12.1 - 1120 Calculate the iterated integral. 16....Ch. 12.1 - Calculate the iterated integral. 19....Ch. 12.1 - Calculate the iterated integral. 20. 1315lnyxydydxCh. 12.1 - Calculate the iterated integral. 21....Ch. 12.1 - Calculate the iterated integral. 24....Ch. 12.1 - Calculate the iterated integral. 25....Ch. 12.1 - Calculate the iterated integral. 26. 0101s+tdsdtCh. 12.1 - Calculate the double integral. 28....Ch. 12.1 - Calculate the double integral. 29....Ch. 12.1 - Calculate the double integral. 31....Ch. 12.1 - Prob. 26ECh. 12.1 - Calculate the double integral. 33....Ch. 12.1 - Calculate the double integral. 24....Ch. 12.1 - Sketch the solid whose volume is given by the...Ch. 12.1 - Sketch the solid whose volume is given by the...Ch. 12.1 - Find the volume of the solid that lies under the...Ch. 12.1 - Find the volume of the solid that lies under the...Ch. 12.1 - Find the volume of the solid lying under the...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Find the volume of the solid in the first octant...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Graph the solid that lies between the surface z =...Ch. 12.1 - Find the average value of f over the given...Ch. 12.1 - Find the average value of f over the given...Ch. 12.1 - If f is a constant function, f(x, y) = k, and R =...Ch. 12.1 - Use the result of Exercise 41 to show that...Ch. 12.1 - Use symmetry to evaluate the double integral. 49....Ch. 12.1 - Use symmetry to evaluate the double integral. 50....Ch. 12.1 - Prob. 46ECh. 12.2 - 16 Evaluate the iterated integral. 1. 040yxy2dxdyCh. 12.2 - Evaluate the iterated integral. 2. 012x2(xy)dydxCh. 12.2 - 16 Evaluate the iterated integral. 3....Ch. 12.2 - Evaluate the iterated integral. 2. 02y2yxydxdyCh. 12.2 - Evaluate the iterated integral. 5....Ch. 12.2 - Evaluate the iterated integral. 6. 010ex1+exdwdvCh. 12.2 - 710 Evaluate the double integral. 7....Ch. 12.2 - Evaluate the double integral. 8....Ch. 12.2 - 710 Evaluate the double integral. 9....Ch. 12.2 - Evaluate the double integral. 10....Ch. 12.2 - Express D as a region of type I and also as a...Ch. 12.2 - Express D as a region of type I and also as a...Ch. 12.2 - Set up iterated integrals for both orders of...Ch. 12.2 - Set up iterated integrals for both orders of...Ch. 12.2 - Evaluate the double integral. 17.DxcosydA, D is...Ch. 12.2 - Evaluate the double integral. 18. D(x2+2y)dA, D is...Ch. 12.2 - Evaluate the double integral. 19. Dy2dA, D is the...Ch. 12.2 - Evaluate the double integral. 18....Ch. 12.2 - Prob. 19ECh. 12.2 - 1520 Evaluate the double integral. 20. D2xydA, D...Ch. 12.2 - 2130 Find the volume of the given solid. 21. Under...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - 2130 Find the volume of the given solid. 25....Ch. 12.2 - Find the volume of the given solid. 28. Bounded by...Ch. 12.2 - Find the volume of the given solid. 29. Enclosed...Ch. 12.2 - Find the volume of the given solid. 30. Bounded by...Ch. 12.2 - Find the volume of the given solid. 31. Bounded by...Ch. 12.2 - Prob. 30ECh. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Sketch the solid whose volume is given by the...Ch. 12.2 - Sketch the solid whose volume is given by the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Prob. 42ECh. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - 43-48 Evaluate the integral by reversing the order...Ch. 12.2 - 4348 Evaluate the integral by reversing the order...Ch. 12.2 - Prob. 46ECh. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - Express D as a union of regions of type I or type...Ch. 12.2 - Express D as a union of regions of type I or type...Ch. 12.2 - 5152 Use Property 11 to estimate the value of the...Ch. 12.2 - Use Property 11 to estimate the value of the...Ch. 12.2 - Prove Property 11.Ch. 12.2 - In evaluating a double integral over a region D, a...Ch. 12.2 - Prob. 55ECh. 12.2 - Prob. 56ECh. 12.2 - Prob. 57ECh. 12.2 - Prob. 58ECh. 12.2 - Prob. 59ECh. 12.3 - 14 A region R is shown. Decide whether to use...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Sketch the region whose area is given by the...Ch. 12.3 - Prob. 6ECh. 12.3 - Evaluate the given integral by changing to polar...Ch. 12.3 - Prob. 8ECh. 12.3 - Evaluate the given integral by changing to polar...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 12ECh. 12.3 - Prob. 11ECh. 12.3 - Use a double integral to find the area of the...Ch. 12.3 - Use a double integral to find the area of the...Ch. 12.3 - Prob. 13ECh. 12.3 - Prob. 14ECh. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - Prob. 15ECh. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - 1319 Use polar coordinates to find the volume of...Ch. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - (a) A cylindrical drill with radius r1 is used to...Ch. 12.3 - 2326 Evaluate the iterated integral by converting...Ch. 12.3 - Evaluate the iterated integral by converting to...Ch. 12.3 - 2326 Evaluate the iterated integral by converting...Ch. 12.3 - Evaluate the iterated integral by converting to...Ch. 12.3 - A swimming pool is circular with a 40-ft diameter....Ch. 12.3 - An agricultural sprinkler distributes water in a...Ch. 12.3 - Use polar coordinates to combine the sum...Ch. 12.3 - (a) We define the improper integral (over the...Ch. 12.3 - Use the result of Exercise 30 part (c) to evaluate...Ch. 12.4 - Electric charge is distributed over the rectangle...Ch. 12.4 - Electric charge is distributed over the disk x2 +...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - 310 Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - A lamina occupies the part of the disk x2 + y2 1...Ch. 12.4 - Find the center of mass of the lamina in Exercise...Ch. 12.4 - The boundary of a lamina consists of the...Ch. 12.4 - Find the center of mass of the lamina in Exercise...Ch. 12.4 - Find the center of mass of a lamina in the shape...Ch. 12.4 - A lamina occupies the region inside the circle x2...Ch. 12.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 12.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 12.4 - Find the moments of inertia Ix, Iy, lo for the...Ch. 12.4 - Consider a square fan blade with sides of length 2...Ch. 12.4 - A lamina with constant density (x, y) = occupies...Ch. 12.4 - A lamina with constant density (x, y) = occupies...Ch. 12.5 - Evaluate the integral in Example 1, integrating...Ch. 12.5 - Evaluate the integral E(xy+z2)dv, where...Ch. 12.5 - Evaluate the iterated integral....Ch. 12.5 - 36 Evaluate the iterated integral. 5....Ch. 12.5 - 00x0xzx2sinydydzdxCh. 12.5 - Evaluate the iterated integral. 6....Ch. 12.5 - Evaluate the triple integral. 9. EydV, where...Ch. 12.5 - Evaluate the triple integral. 10.EezydV, where...Ch. 12.5 - Evaluate the triple integral. 11. Ezx2+z2dV, where...Ch. 12.5 - Evaluate the triple integral. 12. EsinydV, where E...Ch. 12.5 - Evaluate the triple integral. 13. E6xydV, where E...Ch. 12.5 - Prob. 12ECh. 12.5 - 716 Evaluate the triple integral. 13. T x2 dV,...Ch. 12.5 - 7-16 Evaluate the triple integral. 14. TxyzdV,...Ch. 12.5 - Evaluate the triple integral. 17. ExdV, where E is...Ch. 12.5 - Evaluate the triple integral. 18. EzdV, where E is...Ch. 12.5 - Prob. 17ECh. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Prob. 23ECh. 12.5 - Prob. 24ECh. 12.5 - Prob. 25ECh. 12.5 - Prob. 26ECh. 12.5 - Express the integralEf(x,y,z)dV, as an iterated...Ch. 12.5 - Prob. 28ECh. 12.5 - Prob. 29ECh. 12.5 - Prob. 30ECh. 12.5 - Prob. 31ECh. 12.5 - Prob. 32ECh. 12.5 - Write five other iterated integrals that are equal...Ch. 12.5 - Prob. 34ECh. 12.5 - Prob. 35ECh. 12.5 - Prob. 36ECh. 12.5 - 3740 Find the mass and center of mass of the solid...Ch. 12.5 - Prob. 38ECh. 12.5 - Prob. 39ECh. 12.5 - Prob. 40ECh. 12.5 - Prob. 45ECh. 12.5 - Prob. 46ECh. 12.5 - Prob. 47ECh. 12.5 - Prob. 48ECh. 12.5 - Prob. 41ECh. 12.5 - Prob. 42ECh. 12.5 - Prob. 44ECh. 12.5 - Prob. 49ECh. 12.5 - Prob. 50ECh. 12.6 - Plot the point whose cylindrical coordinates are...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Prob. 5ECh. 12.6 - Prob. 6ECh. 12.6 - 78 Identify the surface whose equation is given....Ch. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Sketch the solid whose volume is given by the...Ch. 12.6 - Sketch the solid whose volume is given by the...Ch. 12.6 - Use cylindrical coordinates. 17. Evaluate...Ch. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - 21-32 Use spherical coordinates. 20. Evaluate...Ch. 12.6 - Use cylindrical coordinates. 21. Evaluate Ex2dV,...Ch. 12.6 - Prob. 22ECh. 12.6 - Use cylindrical coordinates. 23. Find the volume...Ch. 12.6 - Prob. 24ECh. 12.6 - 1728 Use cylindrical coordinates. 25. (a) Find the...Ch. 12.6 - Use cylindrical coordinates. 26. (a) Find the...Ch. 12.6 - Use cylindrical coordinates. 27. Find the mass and...Ch. 12.6 - Use cylindrical coordinates. 28. Find the mass of...Ch. 12.6 - Evaluate the integral by changing to cylindrical...Ch. 12.6 - Prob. 30ECh. 12.6 - Prob. 31ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - 78 Identify the surface whose equation is given....Ch. 12.7 - Identify the surface whose equation is given. 8. ...Ch. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - 1114 Sketch the solid described by the given...Ch. 12.7 - Sketch the solid described by the given...Ch. 12.7 - 1112 Sketch the solid described by the given...Ch. 12.7 - Sketch the solid described by the given...Ch. 12.7 - A solid lies above the cone z = x2+y2 and below...Ch. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Sketch the solid whose volume is given by the...Ch. 12.7 - Prob. 19ECh. 12.7 - Prob. 20ECh. 12.7 - Use spherical coordinates. 21. Evaluate B (x2+y2 +...Ch. 12.7 - 21-32 Use spherical coordinates. 22. Evaluate...Ch. 12.7 - Prob. 23ECh. 12.7 - 21-32 Use spherical coordinates. 24. Evaluate...Ch. 12.7 - Use spherical coordinates. 25. Evaluate E xe x2 +...Ch. 12.7 - Prob. 26ECh. 12.7 - Use spherical coordinates. 29. (a) Find the volume...Ch. 12.7 - Use spherical coordinates. 30. Find the volume of...Ch. 12.7 - Prob. 29ECh. 12.7 - Use spherical coordinates. 32. Let H be a solid...Ch. 12.7 - Prob. 31ECh. 12.7 - Use spherical coordinates. 34. Find the mass and...Ch. 12.7 - Use cylindrical or spherical coordinates,...Ch. 12.7 - Use cylindrical or spherical coordinates,...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - A model for the density of the earths atmosphere...Ch. 12.7 - Use a graphing device to draw a silo consisting of...Ch. 12.7 - Prob. 42ECh. 12.7 - Show that x2+y2+z2e-(x2+y2+z2) dx dy dz = 2 (The...Ch. 12.7 - Prob. 45ECh. 12.8 - 16 Find the Jacobian of the transformation. 1. x =...Ch. 12.8 - Find the Jacobian of the transformation. 2. x =...Ch. 12.8 - 16 Find the Jacobian of the transformation. 3. x =...Ch. 12.8 - Find the Jacobian of the transformation. 4. x =...Ch. 12.8 - 16 Find the Jacobian of the transformation. 5. x =...Ch. 12.8 - Find the Jacobian of the transformation. 6. x = v...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - Prob. 12ECh. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - (a) Evaluate E dV, where E is the solid enclosed...Ch. 12.8 - An important problem in thermodynamics is to find...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Let f be continuous oil [0, 1] and letRbe the...Ch. 12 - Prob. 1RCCCh. 12 - Prob. 2RCCCh. 12 - Prob. 3RCCCh. 12 - Prob. 4RCCCh. 12 - Prob. 7RCCCh. 12 - Prob. 5RCCCh. 12 - Suppose a solid object occupies the region E and...Ch. 12 - Prob. 8RCCCh. 12 - (a) If a transformation T is given by x = g(u, v),...Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - A contour map is shown for a function f on the...Ch. 12 - Use the Midpoint Rule to estimate the integral in...Ch. 12 - Calculate the iterated integral. 3....Ch. 12 - Calculate the iterated integral. 4. 0101yexydxdyCh. 12 - Calculate the iterated integral. 5....Ch. 12 - Calculate the iterated integral. 6. 01xex3xy2dydxCh. 12 - Calculate the iterated integral. 7....Ch. 12 - Calculate the iterated integral. 8....Ch. 12 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 12 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 12 - Prob. 39RECh. 12 - Prob. 40RECh. 12 - Prob. 41RECh. 12 - Prob. 42RECh. 12 - Prob. 43RECh. 12 - Prob. 44RECh. 12 - Describe the region whose area is given by the...Ch. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Prob. 34RECh. 12 - Prob. 35RECh. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - Use polar coordinates to evaluate...Ch. 12 - Use spherical coordinates to evaluate...Ch. 12 - Rewrite the integral 11x2101yf(x,y,z)dzdydxas an...Ch. 12 - Prob. 48RECh. 12 - Use the transformation u = x y, v = x + y to...Ch. 12 - Use the transformation x = u2, y = v2 z = w2 to...Ch. 12 - Use the change of variables formula and an...Ch. 12 - Prob. 52RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one. A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture. B A B at some instant, the piston will be tangent to the circle (a) Express the x and y coordinates of point A as functions of t: x= 2 cos(3πt) and y= 2 sin(3πt) (b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds: -cot (3πt) (c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +41/1 (d) Express the slope of the rod…arrow_forward4. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.024. Find the approximations Tη, Mn, and S, to the integral computer algebra system.) ASK YOUR TEACHER PRACTICE ANOTHER 4 39 √ dx for n = 6 and 12. Then compute the corresponding errors ET, EM, and Es. (Round your answers to six decimal places. You may wish to use the sum command on a n Tn Mn Sp 6 12 n ET EM Es 6 12 What observations can you make? In particular, what happens to the errors when n is doubled? As n is doubled, ET and EM are decreased by a factor of about Need Help? Read It ' and Es is decreased by a factor of aboutarrow_forward6. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.001. ASK YOUR TEACHER PRACTICE ANOTHER Let I = 4 f(x) dx, where f is the function whose graph is shown. = √ ² F(x 12 4 y f 1 2 (a) Use the graph to find L2, R2 and M2. 42 = R₂ = M₂ = 1 x 3 4arrow_forward
- practice problem please help!arrow_forwardFind a parameterization for a circle of radius 4 with center (-4,-6,-3) in a plane parallel to the yz plane. Write your parameterization so the y component includes a positive cosine.arrow_forward~ exp(10). A 3. Claim number per policy is modelled by Poisson(A) with A sample x of N = 100 policies presents an average = 4 claims per policy. (i) Compute an a priory estimate of numbers of claims per policy. [2 Marks] (ii) Determine the posterior distribution of A. Give your argument. [5 Marks] (iii) Compute an a posteriori estimate of numbers of claims per policy. [3 Marks]arrow_forward
- 2. The size of a claim is modelled by F(a, λ) with a fixed a a maximum likelihood estimate of A given a sample x with a sample mean x = 11 = 121. Give [5 Marks]arrow_forwardRobbie Bearing Word Problems Angles name: Jocelyn date: 1/18 8K 2. A Delta airplane and an SouthWest airplane take off from an airport at the same time. The bearing from the airport to the Delta plane is 23° and the bearing to the SouthWest plane is 152°. Two hours later the Delta plane is 1,103 miles from the airport and the SouthWest plane is 1,156 miles from the airport. What is the distance between the two planes? What is the bearing from the Delta plane to the SouthWest plane? What is the bearing to the Delta plane from the SouthWest plane? Delta y SW Angles ThreeFourthsMe MATH 2arrow_forwardFind the derivative of the function. m(t) = -4t (6t7 - 1)6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY