College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 28P
Suppose the Universe is considered to be an ideal gas of hydrogen atoms expanding adiabatically. (a) If the density of the gas in the Universe is one hydrogen atom per cubic meter, calculate the number of moles per unit volume (n/V). (b) Calculate the pressure of the Universe, taking the temperature of the Universe as 2.7 K. (c) If the current radius of the Universe is 15 billion light-years (1.4 × 1026 m), find the pressure of the Universe when it was the size of a nutshell, with radius 2.0 × 10−2 m. (Be careful: Calculator overflow can occur.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The geometry of spacetime in the Universe on large scales is determined by the mean energy density of the matter in the Universe, ρ. The critical density of the Universe is denoted by ρ0 and can be used to define the parameter Ω0 = ρ/ρ0. Describe the geometry of space when: (i) Ω0 < 1; (ii) Ω0 = 1; (iii) Ω0 > 1. Explain how measurements of the angular sizes of the hot- and cold-spots in the CMB projected on the sky can inform us about the geometry of spacetime in our Universe. What do measurements of these angular sizes by the WMAP and PLANCK satellites tell us about the value of Ω0?
(a)In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)?
____________________ Pa
(b)What volume (in m3) is occupied by 6 mol of gas?
______________________ m3
(c)If this volume is a cube, what is the length of its sides in kilometers?
________________ km
In the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K.
part (a) What is the pressure, in pascals, in the region between galaxies?
part (b) What volume, in cubic meters, is occupied by 3.5 mol of gas? Part (c) If this volume is a cube, what is the length of one of its edges, in kilometers?
Chapter 12 Solutions
College Physics
Ch. 12.1 - By visual inspection, order the PV diagrams shown...Ch. 12.4 - Three engines operate between reservoirs separated...Ch. 12.5 - Which of the following is true for the entropy...Ch. 12.5 - Prob. 12.5QQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - For an ideal gas in an isothermal process, there...Ch. 12 - Is it possible to construct a heat engine that...Ch. 12 - When a sealed Thermos bottle full of hot coffee is...Ch. 12 - The first law of thermodynamics says we cant get...
Ch. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - An ideal gas is compressed to half its initial...Ch. 12 - A thermodynamic process occurs in which the...Ch. 12 - Prob. 17CQCh. 12 - An ideal gas is enclosed in a cylinder with a...Ch. 12 - Sketch a PV diagram and find the work done by the...Ch. 12 - Gas in a container is at a pressure of 1.5 atm and...Ch. 12 - A 40.0-g projectile is launched by the expansion...Ch. 12 - A gas expands from I to F along the three paths...Ch. 12 - Sketch a PV diagram of the following processes:...Ch. 12 - A sample of helium behaves as an ideal gas as it...Ch. 12 - (a) Find the work done by an ideal gas as it...Ch. 12 - One mole of an ideal gas initially at a...Ch. 12 - (a) Determine the work done on a fluid that...Ch. 12 - Prob. 11PCh. 12 - A cylinder of volume 0.300 m3 contains 10.0 mol of...Ch. 12 - A gas expands from I to F in Figure P12.5. The...Ch. 12 - In a running event, a sprinter does 4.8 105 J of...Ch. 12 - A gas is compressed at a constant pressure of...Ch. 12 - A quantity of a monatomic ideal gas undergoes a...Ch. 12 - A gas is enclosed in a container fitted with a...Ch. 12 - A monatomic ideal gas under-goes the thermodynamic...Ch. 12 - An ideal gas is compressed from a volume of Vi =...Ch. 12 - A system consisting of 0.025 6 moles of a diatomic...Ch. 12 - An ideal monatomic gas expands isothermally from...Ch. 12 - An ideal gas expands at constant pressure. (a)...Ch. 12 - An ideal monatomic gas is contained in a vessel of...Ch. 12 - Consider the cyclic process described by Figure...Ch. 12 - A 5.0-kg block of aluminum is heated from 20C to...Ch. 12 - One mole of gas initially at a pressure of 2.00...Ch. 12 - Consider the Universe to be an adiabatic expansion...Ch. 12 - Suppose the Universe is considered to be an ideal...Ch. 12 - A gas increases in pressure from 2.00 atm to 6.00...Ch. 12 - An ideal gas expands at a constant pressure of...Ch. 12 - A heat engine operates between a reservoir at 25C...Ch. 12 - A heat engine is being designed to have a Carnot...Ch. 12 - The work done by an engine equals one-fourth the...Ch. 12 - In each cycle of its operation, a heat engine...Ch. 12 - One of the most efficient engines ever built is a...Ch. 12 - A gun is a heat engine. In particular, it is an...Ch. 12 - An engine absorbs 1.70 kJ from a hot reservoir at...Ch. 12 - A heat pump has a coefficient of performance of...Ch. 12 - A freezer has a coefficient of performance of...Ch. 12 - Suppose an ideal (Carnot) heal pump could be...Ch. 12 - In one cycle a heat engine absorbs 500 J from a...Ch. 12 - A power plant has been proposed that would make...Ch. 12 - Prob. 43PCh. 12 - A heat engine operates in a Carnot cycle between...Ch. 12 - A Styrofoam cup holding 125 g of hot water at 1.00...Ch. 12 - A 65-g ice cube is initially at 0.0C. (a) Find the...Ch. 12 - A freezer is used to freeze 1.0 L of water...Ch. 12 - What is the change in entropy of 1.00 kg of liquid...Ch. 12 - A 70.0-kg log falls from a height of 25.0 m into a...Ch. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - When an aluminum bar is temporarily connected...Ch. 12 - Prepare a table like Table 12.3 for the following...Ch. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - Prob. 56PCh. 12 - Sweating is one of the main mechanisms with which...Ch. 12 - A Carnot engine operates between the temperatures...Ch. 12 - Prob. 59APCh. 12 - A Carnot engine operates between 100C and 20C. How...Ch. 12 - A substance undergoes the cyclic process shown in...Ch. 12 - When a gas follows path 123 on the PV diagram in...Ch. 12 - Prob. 63APCh. 12 - An ideal gas initially at pressure P0, volume V0,...Ch. 12 - One mole of neon gas is heated from 300. K to 420....Ch. 12 - Every second at Niagara Falls, approximately 5.00 ...Ch. 12 - A cylinder containing 10.0 moles of a monatomic...Ch. 12 - Prob. 68APCh. 12 - Suppose you spend 30.0 minutes on a stair-climbing...Ch. 12 - Hydrothermal vents deep on the ocean floor spout...Ch. 12 - An electrical power plant has an overall...Ch. 12 - A diatomic ideal gas expands from a volume of VA =...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R=13.7x109 light-years=13.0 x 1025m with an average total mass density of about 1x10-26 kg/m3 Only about 4% of total mass is due to “ordinary” matter (such as protons, neutrons, and electrons). Estimate how much ordinary matter (in kg) there is in the observable universe. (For the light-year, see Problem 19.)arrow_forwardSuppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 4 kg r = 0.0407 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)arrow_forwardIn the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3 and the temperature is a frigid 2.7 K. a) What is the pressure, in pascals, in the region between galaxies b) What volume, in cubic meters, is occupied by 2.5 mol of gas? c) If this volume is a cube, what is the length of one of its edges, in kilometers?arrow_forward
- It is observed that the velocity of stars in a galaxy about a point A is proportional to r, where r is the distance from A. This implies that the mass density of matter in the galaxy varies as O r/2 rarrow_forwardIs the total energy of the universe is constant? How?arrow_forward(a)In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)? (b)What volume (in m3) is occupied by 2 mol of gas? (c)If this volume is a cube, what is the length of its sides in kilometers?arrow_forward
- In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. 1.What volume (in m3) is occupied by 5 mol of gas? 2. If this volume is a cube, what is the length of its sides in kilometers?arrow_forwardI asked the following question and was given the attached solution: Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 4 kg r = 0.0407 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3) I don't follow the work and I got the wrong answer, so please help and show your work as I do not follow along easily thanksarrow_forwardMaz v expe MV². 2RT dN F(V)dV = = 4t(- 2TRT AP(- where dN, the number of particles having a velocity between v and v+dV, V velocity of molecules, M moleculer mass of gase, T temperature = sve {()dv= ? V =arrow_forward
- Astronomers believe that the universe is expanding and that stellar objects are moving away from us at a radial velocity V proportional to the distance D from Earth to the object. (a) Write V as a function of D using H as the constant of proportionality. V = (b) The equation in part (a) was first discovered by Edwin Hubble in 1929 and is known as Hubble's law. The constant of proportionality H is known as Hubble's constant. The currently accepted value of Hubble's constant is 70 kilometers per second per megaparsec. (One megaparsec is about 3.086 x 1019 kilometers.) With these units for H, the distance D is measured in megaparsecs, and the velocity V is measured in kilometers per second. The galaxy G2237 + 305 is about 122.7 megaparsecs from Earth. How fast is G2237 + 305 receding from Earth? km/sec (c) One important feature of Hubble's constant is that scientists use it to estimate the age of the universe. The approximate relation is 1012 where y is time in years. Hubble's constant is…arrow_forwardprove average total kinetic energy = 2kT for gas molecules crossing a spherical area, with the following equations.arrow_forwardThe photons that make up the cosmic microwave background were emitted about 380,000 years after the Big Bang. Today, 13.8billion years after the Big Bang, the wavelengths of these photons have been stretched by a factor of about 1100 since they were emitted because lengths in the expanding universe have increased by that same factor of about 1100. Consider a cubical region of empty space in today’s universe 1.00 m on a side, with a volume of 1.00 m3. What was the length s0 of each side and the volume V0 of this same cubical region 380,000 years after the Big Bang? s0 = ? m V0 = ? m^3 Today the average density of ordinary matter in the universe is about 2.4×10−27 kg/m3. What was the average density ?(rho)0 of ordinary matter at the time that the photons in the cosmic microwave background radiation were emitted? (rho)0 = ? kg/m^3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY