Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 17E
A 23-m-long log of irregular cross section lies horizontally, supported by a wall at one end and a cable attached 4.0 m from the other end, as shown in Fig. 12.13. The log weighs 7.5 kN and the tension in the cable is 6.2 kN. Find the log’s center of gravity.
FIGURE 12.13 Exercises 17
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12.3
12.3
A man holds a 171, N ball in his hand, with the forearm horizontal. He
can support the ball in this position because the flexor muscle force,
which is appliedperpendicular to the forearm. The forearm weighs
19.3 N and has a center of gravity as indicated. Find the magnitude of
M.
Chapter 12 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
25. Arc welding uses electric current to make an extremely hot electric arc that can melt metal. The arc emits ...
College Physics: A Strategic Approach (3rd Edition)
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
What are the four types of tissues, and what are their characteristics?
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. The number of stars in the Milky Way G...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the x- and y-coordinates of the center of gravity of a 4.00-ft by 8.00-ft uniform sheet of plywood with the upper right quadrant removed as shown in the figure below. Hint: The mass of any segment of the plywood sheet is proportional to the area of that segment. ft y = ft y (ft) 4.00 2.00 x (ft) 8.00 0. 2.00 4.00 6.00arrow_forwardResting horizontally, a wheelbarrow has a total mass of 76 kg, with its center of gravity 15 cm from the wheel axle.A person grips the handles 1.4 m from the wheel axle. What total vertical force must the person exert to lift it?arrow_forwardOne end of a uniform rod of weight w = 73.5 N and length L = 2.55 m is supported by a cable at an angle of ? = 37.0°above the rod. The other end rests on a small frictionless support and presses into a wall as shown in the figure. Determine the magnitude n of the vertical normal force exerted by the support on the rod and find the magnitude T of the tension in the cable.arrow_forward
- A man holds a 164-N ball in his hand, with the forearm horizontal (see the figure). He can support the ball in this position because of the flexor muscle force M, which is applied perpendicular to the forearm. The forearm weighs 23.7 N and has a center of gravity as indicated. Find (a) the magnitude of Mand the (b) magnitude and (c) direction (as a positive angle counterclockwise from horizontal) of the force applied by the upper arm bone to the forearm at the elbow joint. Upper arm bone Elbow joint 0.0510 mt M Flexor muscle 0.0890 m 0.330 marrow_forward11.46 * A uniform, 8.0-m, Figure P11.46 1150-kg beam is hinged to a wall and supported by a thin cable attached 2.0 m from the free end of the beam (Fig. P11.46). The beam is supported at an angle of 30.0° above the hori- zontal. (a) Draw a free-body diagram of the beam. (b) Find 40.0° K 2.0 m 30.0° the tension in the cable. (c) How hard does the beam push inward on the wall?arrow_forward11.12 A uniform aluminum beam 9.00 m long, weighing 300 N, rests symmetrically on two supports 5.00 m apart (Fig. E11.12). A boy weighing 600 N starts at point A and walks toward the right. (a) In the same diagram construct two graphs showing the upward forces FA and FB exerted on the beam at points A and B, as functions of the coordinate x of the boy. Let 1 cm = 100 N vertically, and 1 cm = 1.00 m horizontally. (b) From your diagram, how far beyond point B can the boy walk before the beam tips? (c) How far Figure E11.12 B Aarrow_forward
- A door 1.00 m wide and 2.00 m high weighs 330 N and is supported by two hinges, one 0.50 m from the top and the other 0.50 m from the bottom. Each hinge supports half the total weight of the door. Assuming that the door’s center of gravity is at its center, find the horizontal components of force exerted on the door by each hinge.arrow_forwardA uniform, 8.0-m, 1500-kg beam is hinged to a wall and supported by a thin cable attached 2.0 m from the free end of the beam. The beam is supported at an angle of 30° above the horizontal. (a) find the tension in the cable and (b) how hard does the beam push inward on the wall?arrow_forwardTwo ladders, 4.00 m and 3.00 m long, are hinged at point A and tied together by a horizontal rope 0.90 m above the floor. The ladders weigh 600 N and 450 N, respectively, and the center of gravity of each is at its center. Assume that the floor is freshly waxed and frictionless. (a) Find the upward force at the bottom of each ladder. (b) Find the tension in the rope.arrow_forward
- Two men are carrying a ladder of length l by supporting it at its ends. The ladder is horizontal, and its center of gravity is 1/4 of the way from one end. At what distance x from this end must a can of paint, of mass 3/4 of that of the ladder, be suspended so that the men carry equal loads?arrow_forwardResting horizontally, a wheelbarrow has a total mass of 65 kg, with its center of gravity 12 cm from the wheel axle.A person grips the handles 1.3 m from the axle. What total vertical force must the person exert to lift it?arrow_forwardA uniform L = 6.71 m long horizontal beam that weighs WB= 363N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cablewith tension Tthat makes an angle of 50.0° with the horizontal, and a person of weight WP= 427.5N is standing d = 2.38m from the pin. Find the magnitude of the force R exertedon the beam by the wall if the beam is in equilibrium. A)532N B)534N C)536N D)538Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY