COLLEGE PHYSICS (LL)W/MOD.MASTERINGPHYS
4th Edition
ISBN: 9780135160121
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 14P
When you stifle a sneeze, you can damage delicate tissues because the pressure of the air that is not allowed to escape may rise by up to 45 kPa. If this extra pressure acts on the inside of your 8.4-mm-diameter eardrum, what is the outward force?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:28
Students have asked these similar questions
When you stifle a sneeze, you can damage delicate tissues because the pressure of the air that is not allowed to escape may rise by up to 45 kPa. If this extra pressure acts on the inside of your 8.4-mm-diameter eardrum, what is the outward force?
If the eardrum experiences a 1.5 N increase from the atmospheric pressure, it can be
damaged. When you go scuba diving in the ocean, at what depth could such damage
start to occur if your eardrum is 8.2-mm in diameter? The answer is expressed in meters
and in two decimal places.
If the eardrum experiences a 1.5 N increase from the atmospheric pressure, it can be damaged . When you go scuba diving in the ocean, at what depth could such damage start to occur if your eardrum is of 8.2-mm diameter? Express your answer in Newtons in two decimal places.
Chapter 12 Solutions
COLLEGE PHYSICS (LL)W/MOD.MASTERINGPHYS
Ch. 12 - Which has more mass, a mole of Ne gas or a mole of...Ch. 12 - If you launch a projectile upward with a high...Ch. 12 - Prob. 3CQCh. 12 - If you double the typical speed of the molecules...Ch. 12 - Two gases have the same number of molecules per...Ch. 12 - If the temperature T of an ideal gas doubles, by...Ch. 12 - A bottle of helium gas and a bottle of argon gas...Ch. 12 - A gas cylinder contains 1.0 mol of helium at a...Ch. 12 - Prob. 9CQCh. 12 - Prob. 10CQ
Ch. 12 - You need to precisely measure the dimensions of a...Ch. 12 - A common trick for opening a stubborn lid on a jar...Ch. 12 - Prob. 13CQCh. 12 - Materials A and B have equal densities, but A has...Ch. 12 - Prob. 15CQCh. 12 - You need to raise the temperature of a gas by 10C....Ch. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - A sample of ideal gas is in a cylinder with a...Ch. 12 - A student is heating chocolate in a pan on the...Ch. 12 - If you bake a cake at high elevation, where...Ch. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 29CQCh. 12 - Prob. 30MCQCh. 12 - Prob. 31MCQCh. 12 - A gas is compressed by an isothermal process that...Ch. 12 - Prob. 33MCQCh. 12 - Prob. 34MCQCh. 12 - Prob. 35MCQCh. 12 - Prob. 36MCQCh. 12 - Prob. 37MCQCh. 12 - Prob. 38MCQCh. 12 - Prob. 1PCh. 12 - How many grams of water (H2O) have the same number...Ch. 12 - Prob. 3PCh. 12 - How many cubic millimeters (mm3) are in 1 L?Ch. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - An ideal gas is at 20C. The gas is cooled,...Ch. 12 - An ideal gas at 0C consists of 1.0 1023 atoms. 10...Ch. 12 - An ideal gas at 20C consists of 2.2 1022 atoms....Ch. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - When you stifle a sneeze, you can damage delicate...Ch. 12 - Prob. 15PCh. 12 - Mars has an atmosphere composed almost entirely of...Ch. 12 - Prob. 18PCh. 12 - The lowest pressure ever obtained in a laboratory...Ch. 12 - Prob. 20PCh. 12 - Helium has the lowest condensation point of any...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - A cylinder contains 3.0 L of oxygen at 300 K and...Ch. 12 - Prob. 28PCh. 12 - 0.10 mol of argon gas is admitted to an evacuated...Ch. 12 - Prob. 30PCh. 12 - 0.10 mol of argon gas is admitted to an evacuated...Ch. 12 - 0.10 mol of argon gas is admitted to an evacuated...Ch. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Prob. 36PCh. 12 - A 1.0 cm3 air bubble is released from the sandy...Ch. 12 - A weather balloon rises through the atmosphere,...Ch. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - The length of a steel beam increases by 0.73 mm...Ch. 12 - Prob. 44PCh. 12 - The length of a steel beam increases by 0.73 mm...Ch. 12 - At 20C, the hole in an aluminum ring is 2.500 cm...Ch. 12 - The temperature of an aluminum disk is increased...Ch. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - a. 100 J of heat energy are transferred to 20 g of...Ch. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Alligators and other reptiles dont use enough...Ch. 12 - Prob. 56PCh. 12 - When air is inhaled, it quickly becomes saturated...Ch. 12 - Prob. 58PCh. 12 - Prob. 59PCh. 12 - What minimum heat is needed to bring 100 g of...Ch. 12 - Brewed coffee is often too hot to drink right...Ch. 12 - Prob. 62PCh. 12 - 30 g of copper pellets are removed from a 300C...Ch. 12 - Prob. 64PCh. 12 - A copper block is removed from a 300C oven and...Ch. 12 - Prob. 66PCh. 12 - If a person has a dangerously high fever,...Ch. 12 - A container holds 1.0 g of argon at a pressure of...Ch. 12 - A container holds 1.0 g of oxygen at a pressure of...Ch. 12 - What is the temperature change of 1.0 mol of a...Ch. 12 - Heating 2.5 mol of neon in a rigid container...Ch. 12 - Prob. 72PCh. 12 - A 1.8-cm-thick wood floor covers a 4.0 m 5.5 m...Ch. 12 - A stainless-steel-bottomed kettle, its bottom 24...Ch. 12 - Seals may cool themselves by using thermal...Ch. 12 - Electronics and inhabitants of the International...Ch. 12 - The glowing filament in a lamp is radiating energy...Ch. 12 - Prob. 78PCh. 12 - If you lie on the ground at night with no cover,...Ch. 12 - Prob. 80PCh. 12 - Prob. 81PCh. 12 - Prob. 82PCh. 12 - Prob. 83GPCh. 12 - Prob. 84GPCh. 12 - Prob. 85GPCh. 12 - Prob. 86GPCh. 12 - Prob. 87GPCh. 12 - A 5.0-m-diameter garden pond holds 5.9 103 kg of...Ch. 12 - James Joule (after whom the unit of energy is...Ch. 12 - Prob. 90GPCh. 12 - Prob. 91GPCh. 12 - Prob. 92GPCh. 12 - A 68 kg woman cycles at a constant 15 km/h. All of...Ch. 12 - Prob. 94GPCh. 12 - Prob. 95GPCh. 12 - Prob. 97GPCh. 12 - Your 300 mL cup of coffee is too hot to drink when...Ch. 12 - A gas is compressed from 600 cm3 to 200 cm3 at a...Ch. 12 - An expandable cube, initially 20 cm on each side,...Ch. 12 - Prob. 101GPCh. 12 - Prob. 102GPCh. 12 - Prob. 103GPCh. 12 - Homes are often insulated with fiberglass...Ch. 12 - The surface area of an adult human is about 1.8...Ch. 12 - Prob. 106MSPPCh. 12 - Prob. 107MSPPCh. 12 - Prob. 108MSPPCh. 12 - Prob. 109MSPPCh. 12 - Prob. 110MSPPCh. 12 - Prob. 111MSPPCh. 12 - Prob. 112MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. How do weight and mass differ?
Applied Physics (11th Edition)
We learn about the heavy bombardment by studying (a) craters and rocks from the Moon; (b) zircon mineral grains...
Life in the Universe (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following is a strong gre...
The Cosmic Perspective Fundamentals (2nd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Description of Motion:
Tutorials in Introductory Physics
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In about 1657, Otto von Guericke, inventor of the air pump, evacuated a sphere made of two brass hemispheres (Fig. P15.62). Two teams of eight horses each could pull the hemispheres apart only on some trials and then with greatest difficulty, with the resulting sound likened to a cannon firing. Find the force F required to pull the thin-walled evacuated hemispheres apart in terms of R, the radius of the hemispheres; P, the pressure inside the hemispheres; and atmospheric pressure P0. Figure P15.62arrow_forwardHow many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardIf the force on the eardrum increases by 1.5 N compared to the force at atmospheric pressure, the eardrum may burst. How deep can a diver dive without damaging the eardrum? The tympanic membrane of an adult human is a membrane of circular cross-section with a diameter of 8.2 mm, and the density of the sea is 1030 kg/m³.arrow_forward
- If you dive underwater, you notice an uncomfortable pressure on your eardrums due to the increased pressure. The human eardrum has an area of about 70 mm2(7 × 10-5 m2), and it can sustain a force of about 7 N without rupturing. If your body had no means of balancing the extra pressure (which, in reality, it does), what would be the maximum depth you could dive withoutrupturing your eardrum?A. 0.3 m B. 1 m C. 3 m D. 10 marrow_forwardThe tympanic membrane, or eardrum, is a structure that separates the external and middle parts of the ear (see the figure). It is sensitive to and vibrates in response to changes in air pressure and transmits these vibrations to other structures in the inner ear that lead to the sensation of hearing: Under normal conditions, the pressure on the inside and outside of the tympanic membrane are kept approximately equal. The auditory tube, also called the Eustachian tube, is responsible for this equilibration. However, rapid changes in external pressure can cause large pressure differentials on the tympanic membrane, causing it to rupture. A differential force across the eardrum membrane as little as 5.0 N can cause a rupture. (a) If the cross-sectional area of the membrane is 1.0 cm², what is the maximum tolerable pressure difference between the external and inner ear? (b) Based on your answer in part (a), to what maximum depth could a person dive in fresh water before rupturing an…arrow_forwardAt a given instant, the blood pressure in the heart is 1.7 x 104 Pa. If an artery in the brain is 0.46 m above the heart, what is the pressure in the artery? Ignore any pressure changes due to blood flow.arrow_forward
- If a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pressures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m3.arrow_forwardIf a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure, while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pres- sures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m³. 88.arrow_forwardIf a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure, while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pressures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m3.1-sketch a diagramarrow_forward
- The tympanic membrane, or eardrum, is a structure that separates the external and middle parts of the ear (see the figure). It is sensitive to and vibrates in response to changes in air pressure and transmits these vibrations to other structures in the inner ear that lead to the sensation of hearing. Under normal conditions, the pressure on the inside and outside of the tympanic membrane are kept approximately equal. The auditory tube, also called the Eustachian tube, is responsible for this equilibration. However, rapid changes in external pressure can cause large pressure differentials on the tympanic membrane, causing it to rupture. A differential force across the eardrum membrane as little as 5.0 N can cause a rupture. (a) If the cross-sectional area of the membrane is 1.0 cm², what is the maximum tolerable pressure difference between the external and inner ear? (b) Based on your answer in part (a), to what maximum depth could a person dive in fresh water before rupturing an…arrow_forwardA uniform pressure of 7.0x105 Pa is applied to all six sides of a copper cube. What is the percentage change in volume of the cube? (for copper, B = 14x1010 N/m²) O 0.25 x 10-³ % O 0.45 x 10-3 % 0.30 x 10-3 % 0.50 x 10-3 %arrow_forwardPlease help. Thank you Some claim that mountain climbers suffer from headaches due not only to a lack of oxygen in the brain, but also to the expansion of the brain in the cranium. Find the fractional change of the brain's volume due to a reduction in pressure from 101 kPa at sea level to 31.2 kPa high in the Himalayas. The bulk modulus is 2.10 GPa. (Another reason the brain expands is the dilation of the blood vessels in the brain in order to deliver more oxygen.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY