Chemistry for Engineering Students
4th Edition
ISBN: 9781337398909
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.59PAE
Use the web to look up boiler scale and explain chemically why it is a problem in equipment where water is heated (such as in boilers).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Note:-
• Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism.
• Answer completely.
• You will get up vote for sure.
Hypochlorous acid (HOCI) is produced by bubbling chlorine through an agitated
suspension of mercury(II) oxide in water. The chemical equation for this process is
2 Cl2(g) + 2 HgO(s) + H;O(€)=HgO · HgCl2(s) + 2 HOC(aq)
Write the equilibrium expression for this reaction.
Balance each reaction and write its reaction quotient, Qc:
Chapter 12 Solutions
Chemistry for Engineering Students
Ch. 12 - list chemical reactions important in the...Ch. 12 - Explain that equilibrium is dynamic, and that at...Ch. 12 - Prob. 3COCh. 12 - calculate equilibrium constants from experimental...Ch. 12 - Prob. 5COCh. 12 - calculate molar solubility from Kspor vice versa.Ch. 12 - Prob. 7COCh. 12 - Prob. 8COCh. 12 - calculate the new equilibrium composition of a...Ch. 12 - Explain the importance of both kinetic and...
Ch. 12 - Identify the first chemical step in the production...Ch. 12 - Explain why the hydration process for concrete is...Ch. 12 - Prob. 12.3PAECh. 12 - 12.4 In what geographical region of the country...Ch. 12 - Prob. 12.5PAECh. 12 - Prob. 12.6PAECh. 12 - Prob. 12.7PAECh. 12 - On your desk is a glass half-filled with water and...Ch. 12 - An equilibrium involving the carbonate and...Ch. 12 - A small quantity of a soluble salt is placed in...Ch. 12 - Prob. 12.11PAECh. 12 - Prob. 12.12PAECh. 12 - Write equilibrium (mass action) expressions for...Ch. 12 - What is the difference between homogeneous...Ch. 12 - Write equilibrium expressions for each of the...Ch. 12 - Write equilibrium expressions for each of the...Ch. 12 - 12.17 Which of the following is more likely to...Ch. 12 - The reaction, 3 H2(g) + N2(g) (g), has the fol...Ch. 12 - 12.19 For each of the following equations, write...Ch. 12 - Consider the following equilibria involving SO2(g)...Ch. 12 - Prob. 12.21PAECh. 12 - Prob. 12.22PAECh. 12 - Prob. 12.23PAECh. 12 - Prob. 12.24PAECh. 12 - Prob. 12.25PAECh. 12 - The following data were collected for the...Ch. 12 - The following data were collected for a system at...Ch. 12 - Prob. 12.28PAECh. 12 - Nitrosyl chloride, NOCI, decomposes to NO and Cl,...Ch. 12 - Hydrogen gas and iodine gas react via the...Ch. 12 - 12.31 A system consisting of 0.100 mole of oxygen...Ch. 12 - Prob. 12.32PAECh. 12 - Prob. 12.33PAECh. 12 - 1’he reaction in Exercise 12.33 was repeated. This...Ch. 12 - In the reaction in Exercise 12.33, another trial...Ch. 12 - The experiment in Exercise 12.33 was redesigned so...Ch. 12 - Again the experiment in Exercise 12.33 was...Ch. 12 - At a particular temperature, the equilibrium...Ch. 12 - A student is simulating the carbonic acid—hydrogen...Ch. 12 - Because carbonic acid undergoes a second...Ch. 12 - Because calcium carbonate is a sink for CO32- in a...Ch. 12 - 12.42 The following reaction is in equilibrium in...Ch. 12 - Prob. 12.43PAECh. 12 - Prob. 12.44PAECh. 12 - The following equilibrium is established in a...Ch. 12 - Write the K_, expression for each of the following...Ch. 12 - Prob. 12.47PAECh. 12 - calculate the molar solubility of the following...Ch. 12 - 12.49 The Safe Drinking Water Act of 1974...Ch. 12 - In Exercise 12.49, what is the allowed...Ch. 12 - Prob. 12.51PAECh. 12 - Because barium sulfate is opaque to X-rays, it is...Ch. 12 - The ore cinnabar (HgS) is an important source of...Ch. 12 - Prob. 12.54PAECh. 12 - From the solubility data given for the following...Ch. 12 - The solubility of magnesium fluoride, MgF2, in...Ch. 12 - Solid Na2SO4 is added slowly to a solution that is...Ch. 12 - Will a precipitate of Mg(OH)2 form when 25.0 mL of...Ch. 12 - Use the web to look up boiler scale and explain...Ch. 12 - Prob. 12.60PAECh. 12 - Prob. 12.61PAECh. 12 - 12.62 Write the formula of the conjugate acid of...Ch. 12 - 12.63 For each of the following reactions,...Ch. 12 - What are the products of each of the following...Ch. 12 - Prob. 12.65PAECh. 12 - Prob. 12.66PAECh. 12 - 12.67 Hydrofluoric acid is a weak acid used in the...Ch. 12 - The pH of a 0.129 M solution of a weak acid, HB,...Ch. 12 - Calculate the pH of a 0.10 M solution of propanoic...Ch. 12 - Find the pH of a 0.115 M solution of NH3(aq).Ch. 12 - Acrylic acid is used in the polymer industry in...Ch. 12 - Prob. 12.72PAECh. 12 - Prob. 12.73PAECh. 12 - Prob. 12.74PAECh. 12 - Cyanic acid (HOCN) is a weak acid with AL, = 3.5 X...Ch. 12 - In a particular experiment, the equilibrium...Ch. 12 - Prob. 12.77PAECh. 12 - Prob. 12.78PAECh. 12 - Prob. 12.79PAECh. 12 - Prob. 12.80PAECh. 12 - Prob. 12.81PAECh. 12 - Prob. 12.82PAECh. 12 - Prob. 12.83PAECh. 12 - Prob. 12.84PAECh. 12 - 12.85 In the figure, orange fish are placed in one...Ch. 12 - For the system in the preceding problem, show the...Ch. 12 - Prob. 12.87PAECh. 12 - Which of the following is more likely to...Ch. 12 - Prob. 12.89PAECh. 12 - Prob. 12.90PAECh. 12 - In the following equilibrium in a closed system,...Ch. 12 - Consider the following system:...Ch. 12 - The decomposition of NH4HS , NH4HS(s)NH3(g)+H2S(g)...Ch. 12 - You are designing a process to remove carbonate...Ch. 12 - Equal amounts of two gases, A and B3, are placed...Ch. 12 - Prob. 12.96PAECh. 12 - Prob. 12.97PAECh. 12 - Prob. 12.98PAECh. 12 - Solid CaCO3 ; is placed in a closed container and...Ch. 12 - 12.100 A reaction important in smog formation is...Ch. 12 - 12.101 An engineer working on a design to extract...Ch. 12 - 12.102 A chemical engineer is working to optimize...Ch. 12 - 12.103 Methanol, CH3OH, can be produced by the...Ch. 12 - Prob. 12.104PAECh. 12 - 12.105 Using the kinetic-molecular theory, explain...Ch. 12 - 12.106 The solubility of KCl is 34.7 g per 100 g...Ch. 12 - Prob. 12.107PAECh. 12 - 12.108 A nuclear engineer is considering the...Ch. 12 - 12.109 Copper(II) iodate has a solubility of 0.136...Ch. 12 - 12.110 In Exercise 12.109, what do you predict...Ch. 12 - 12.111 You have three white solids. What...Ch. 12 - Prob. 12.112PAECh. 12 - Prob. 12.113PAECh. 12 - Prob. 12.114PAECh. 12 - Prob. 12.115PAECh. 12 - Prob. 12.116PAECh. 12 - 12.117 The vapor pressure of water at 80.0 °C is...Ch. 12 - Prob. 12.118PAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardWhen a mixture of hydrogen and bromine is maintained at normal atmospheric pressure and heated above 200. °C in a closed container, the hydrogen and bromine react to form hydrogen bromide and a gas-phase equilibrium is established. Write a balanced chemical equation for the equilibrium reaction. Use bond enthalpies from Table 6.2 ( Sec. 6-6b) to estimate the enthalpy change for the reaction. Based on your answers to parts (a) and (b), which is more important in determining the position of this equilibrium, the entropy effect or the energy effect? In which direction will the equilibrium shift as the temperature increases above 200. °C? Explain. Suppose that the pressure were increased to triple its initial value. In which direction would the equilibrium shift? Why is the equilibrium not established at room temperature?arrow_forwardCalculate the equilibrium constant of the reaction CO(g) + 2 H2S(g) CS2(g) + H2O(g) + H2(g) from the following information: CO(g) + 3 H2(g) CH4(g) + H2O(g) K = 9.17 x 10-2 CH4(g) + 2 H2S(g) CS2(g) + H2(g) K = 3.3 x 104 Answer: [3.03 x 103 ]arrow_forward
- Consider the equilibrium system described by the chemical reaction below. A 1.00 L reaction vessel was filled with 2.00 mol SO2 and 2.00 mol NO2 and allowed to react at a high temperature. At equilibrium, there were 1.30 mol of NO in the vessel. Determine the concentrations of all reactants and products at equilibrium and then calculate the value of Kc for this reaction. SO2(9) + NO2(g) SO3(g) + NO(g) 1 NEXT Based on the given values, fill in the ICE table to determine concentrations of all reactants and products. SO2(g) NO2(g) SO3(g) NO(g) + Initial (M) 2.00 2.00 Change (M) -1.30 -1.30 1.30 1.30 Equilibrium (M) 0.70 0.70 1.30 1.30 RESET +x -X 1.00 2.00 1.30 -1.00 -1.30 2.30 2.70 0.70 1.35 2.00 - x 2.00 +xarrow_forwardThe equilibrium constant for the reaction, 3 H2(g) + N2(g)= 2NH3(g), at a given temperature is 1.4 x 10–7. Calculate the equilibrium concentration of ammonia, if [H2] = 1.2 x 10–2 mol L–1 and [N2] = 3.2 x 10–3 mol L–1.arrow_forwardCalculate the value of the equilibrium constant (Keg) for the following reaction: 2 CO (g) + 6 H2 (g) → 2 CH4 (g) + 2 H2O (g) The following two equilibrium reactions should be helpful in determining this value: CO (g) + 2 H2S (g) <→ CS2 (g) + H2O (g) + H2 (g) ½ CH4 (g) + H2S (g) <→ ½ CS2 (g) + 2 H2 (g) Reaction 1: K1 = 1.3 x 105 Reaction 2: K2 = 180 (A) 2.3 x 107 (B) 1.9 x108 (C) (D) 16.1 722 (E) 1.5 x 10-8arrow_forward
- The reaction N2O4−⇀↽−2NO2 is allowed to reach equilibrium in a chloroform solution at 25 ∘C . The equilibrium concentrations are 0.327 mol/L N2O4 and 1.91 mol/L NO2 . Calculate the equilibrium constant, Kc , for this reaction. Kc= 11.16 An additional 1.00 mol NO2 is added to 1.00 L of the solution and the system is allowed to reach equilibrium again at the same temperature. Select the direction of the equilibrium shift after the NO2 is added. towards the product towards the reactant no change Determine how the addition of extra NO2 in the previous step will affect the rate constant, Kc . Kc will increase Kc will not change Kc will decrease Calculate the equilibrium concentrations of N2O4 and NO2 after the extra 1.00 mol NO2 is added to 1.00 L of solution. [N2O4]= mol/L [NO2]= mol/Larrow_forwardConsider the reaction 3A(g)+2B(g)=2C(g)+1D(aq). In 3.1L, 2.79mol A and 2.72mol B are mixed. At equilibrium, 0.573mol D are detected. What is the concentration equilibrium constant (K) of the reaction? Enter your answer to four decimal places if it is less than 1, otherwise answer with a minimum of four digits (ie: 2543, 153.4, 12.52, or 6.523). If your last digit is a trailing zero remember that it's okay that canvas removes it. If it is smaller than 0.0001, enter "0" and make sure you indicate your actual answer clearly on your work.arrow_forwardThe equilibrium system between nitrogen gas, oxygen gas, and nitrogen dioxide gas is given. N2(g)+2O2(g)↽−−⇀ 2NO2(g) Write the balanced chemical equation for the reverse reaction. Include physical states for all species.arrow_forward
- X,(g) X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 4.43 kJ - mol' at 2000. K and -53.56 kJ · mol- at 3000. K. Determine the value of the thermodynamic equilibrium constant, K, at each temperature. At 2000. K, AG = 4.43 kJ · mol. What is K at that temperature? K at 2000. K = Question Source: McQuarrie, Rock, And Gallogly 4e- General Chemsitry Publisher: University Science 10:21 PN 2/16/2022 hp f6 ho insert prt sc & back 8.arrow_forwardYou are given the following information about the mixture of KCl, NaCl and LiCl which produces AgCl upon reacting with another substance that contains silver and no Chlorine. Determine the mole fraction of LiCl? Mass of NaCl + KCl in the mixture = 2.370 g Mass of NaCl + LiCl in the mixture = 1.290 g Mass of AgCl precipitated from the mixture = 6.435 garrow_forwardHelp with this.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY