
Multivariable Calculus
11th Edition
ISBN: 9781337275378
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.3, Problem 71E
Bond AngleConsider a regular tetrahedron with vertices (0,0,0),(k,k,0),(k,0,k) and (0,k,k), where k is a positive real number.
(a) Sketch the graph of the tetrahedron.
(b) Find the length of each edge.
(c) Find the angle between any two edges.
(d) Find the angle between the line segments from the centroid (k/2,k/2,k/2) to two vertices. This is the bond angle for a molecule, such as CH4 (methane) or PbCl4 (lead tetrachloride), where the structure of the molecule is a tetrahedron.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Evaluate the definite integral using the given integration limits and the limits obtained by trigonometric substitution.
14
x²
dx
249
(a) the given integration limits
(b) the limits obtained by trigonometric substitution
Assignment #1
Q1: Test the following series for convergence. Specify the test you use:
1
n+5
(-1)n
a) Σn=o
√n²+1
b) Σn=1 n√n+3
c) Σn=1 (2n+1)3
3n
1
d) Σn=1 3n-1
e) Σn=1
4+4n
answer problem 1a, 1b, 1c, 1d, and 1e and show work/ explain how you got the answer
Chapter 11 Solutions
Multivariable Calculus
Ch. 11.1 - CONCEPT CHECK Scalar and Vector Describe the...Ch. 11.1 - CONCEPT CHECK Vector Two points and a vector are...Ch. 11.1 - Sketching a Vector In Exercises 3 and 4, (a) find...Ch. 11.1 - Prob. 4ECh. 11.1 - Equivalent Vectors In Bunches 5-8, find the...Ch. 11.1 - Equivalent Vectors In Bunches 5-8, find the...Ch. 11.1 - Equivalent Vectors In Bunches 5-8, find the...Ch. 11.1 - Equivalent Vectors In Bunches 5-8, find the...Ch. 11.1 - Writing a Vector in Different Forms In Exercises...Ch. 11.1 - Writing a Vector in Different Forms In Exercises...
Ch. 11.1 - Writing a Vector in Different Forms In Exercises...Ch. 11.1 - Writing a Vector in Different Forms to Exercises...Ch. 11.1 - Prob. 13ECh. 11.1 - Writing a Vector in Different Forms to Exercises...Ch. 11.1 - Writing a Vector in Different Forms In Exercises...Ch. 11.1 - Writing a Vector in Different Forms In Exercises...Ch. 11.1 - Finding a Terminal Point In Exercise 17 and 18,...Ch. 11.1 - Finding a Terminal Point In Exercise 17 and 18,...Ch. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Finding a Magnitude of a VectorIn Exercises 1924,...Ch. 11.1 - Finding a Magnitude of a VectorIn Exercises 1924,...Ch. 11.1 - Finding a Magnitude of a VectorIn Exercises 1924,...Ch. 11.1 - Sketching Scalar MultipliesIn Exercises 25 and 26,...Ch. 11.1 - Sketching Scalar MultipliesIn Exercises 25 and 26,...Ch. 11.1 - Using Vector Operations In Exercise 27 and 28, And...Ch. 11.1 - Using Vector Operations In Exercise 27 and 28, And...Ch. 11.1 - Sketching a Vector In Exercises 29-34, use the...Ch. 11.1 - Prob. 30ECh. 11.1 - Sketching a Vector In Exercises 29-34, use the...Ch. 11.1 - Sketching a Vector In Exercises 29-34, use the...Ch. 11.1 - Sketching a Vector In Exercises 29-34, use the...Ch. 11.1 - Prob. 34ECh. 11.1 - Finding a Unit Vector In Exercises 35-38, find the...Ch. 11.1 - Finding a Unit Vector In Exercises 35-38, find the...Ch. 11.1 - Finding a Unit Vector In Exercises 35-38, find the...Ch. 11.1 - Finding a Unit Vector In Exercises 35-38, find the...Ch. 11.1 - Finding MagnitudesIn Exercises 3942, find the...Ch. 11.1 - Prob. 40ECh. 11.1 - Finding MagnitudesIn Exercises 3942, find the...Ch. 11.1 - Prob. 42ECh. 11.1 - Using the Triangle Inequality In Exercises 43 und...Ch. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Finding a Vector In Exercises 45-48, find the...Ch. 11.1 - Prob. 47ECh. 11.1 - Prob. 48ECh. 11.1 - Prob. 49ECh. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Finding a Vector In Exercises 53-56, find the...Ch. 11.1 - Finding a Vector In Exercises 53-56, find the...Ch. 11.1 - Finding a Vector In Exercises 53-56, find the...Ch. 11.1 - Finding a Vector In Exercises 53-56, find the...Ch. 11.1 - Prob. 57ECh. 11.1 - Prob. 58ECh. 11.1 - Prob. 59ECh. 11.1 - HOW DO YOU SEE IT? Use the figure to determine...Ch. 11.1 - Finding Values In Exercises 61-66, And a and b...Ch. 11.1 - Prob. 62ECh. 11.1 - Prob. 63ECh. 11.1 - Prob. 64ECh. 11.1 - Prob. 65ECh. 11.1 - Prob. 66ECh. 11.1 - Finding Unit VectorsIn Exercises 6772, find a unit...Ch. 11.1 - Prob. 68ECh. 11.1 - Prob. 69ECh. 11.1 - Prob. 70ECh. 11.1 - Finding Unit Vectors In Exercises 67-72, find a...Ch. 11.1 - Prob. 72ECh. 11.1 - Prob. 73ECh. 11.1 - Prob. 74ECh. 11.1 - Prob. 75ECh. 11.1 - Numerical and Graphical Analysis Forces with...Ch. 11.1 - Prob. 77ECh. 11.1 - Prob. 78ECh. 11.1 - Cable Tension In Exercises 79 and 80, determine...Ch. 11.1 - Cable TensionIn Exercises 79 and 80, determine the...Ch. 11.1 - Projectile Motion A gun with a muzzle velocity of...Ch. 11.1 - Prob. 82ECh. 11.1 - Navigation A plane is flying with a bearing of...Ch. 11.1 - NavigationA plane flies at a constant groundspeed...Ch. 11.1 - Prob. 85ECh. 11.1 - Prob. 86ECh. 11.1 - Prob. 87ECh. 11.1 - Prob. 88ECh. 11.1 - Prob. 89ECh. 11.1 - True or False? In Exercises 85-94, determine...Ch. 11.1 - Prob. 91ECh. 11.1 - True or False? In Exercises 8594, determine...Ch. 11.1 - Prob. 93ECh. 11.1 - Prob. 94ECh. 11.1 - Prob. 95ECh. 11.1 - Prob. 96ECh. 11.1 - Prob. 97ECh. 11.1 - Proof Prove that the vector w=uv+vu bisects the...Ch. 11.1 - Prob. 99ECh. 11.1 - PUTNAM EXAM CHALLENGE A coast artillery gun can...Ch. 11.2 - CONCEPT CHECK Describing Coordinates A point in...Ch. 11.2 - Prob. 2ECh. 11.2 - CONCEPT CHECK Comparing Graphs Describe the graph...Ch. 11.2 - Prob. 4ECh. 11.2 - Plotting Points In Exercises 5-8. plot the points...Ch. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Finding Coordinates of a Point In Exercises 9-12,...Ch. 11.2 - Finding Coordinates of a PointIn Exercises 912,...Ch. 11.2 - Finding Coordinates of a PointIn Exercises 912,...Ch. 11.2 - Prob. 12ECh. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Prob. 14ECh. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Prob. 16ECh. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Prob. 18ECh. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Prob. 22ECh. 11.2 - Using the Three-Dimensional Coordinate System In...Ch. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Classifying a TriangleIn Exercises 2932, find the...Ch. 11.2 - Classifying a TriangleIn Exercises 2932, find the...Ch. 11.2 - Classifying a TriangleIn Exercises 2932, find the...Ch. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Finding the Equation of a Sphere In Exercises...Ch. 11.2 - Prob. 38ECh. 11.2 - Finding the Equation of a SphereIn Exercises 3742,...Ch. 11.2 - Prob. 40ECh. 11.2 - Prob. 41ECh. 11.2 - Prob. 42ECh. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.2 - Prob. 45ECh. 11.2 - Prob. 46ECh. 11.2 - Prob. 47ECh. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.2 - Prob. 51ECh. 11.2 - Prob. 52ECh. 11.2 - Prob. 53ECh. 11.2 - Prob. 54ECh. 11.2 - Prob. 55ECh. 11.2 - Prob. 56ECh. 11.2 - Prob. 57ECh. 11.2 - Prob. 58ECh. 11.2 - Prob. 59ECh. 11.2 - Prob. 60ECh. 11.2 - Prob. 61ECh. 11.2 - Finding a Vector In Exercises 59-62, rind the...Ch. 11.2 - Prob. 63ECh. 11.2 - Parallel Vectors In Exercises 63-66, determine...Ch. 11.2 - Prob. 65ECh. 11.2 - Parallel Vectors In Exercises 63-66, determine...Ch. 11.2 - Prob. 67ECh. 11.2 - Prob. 68ECh. 11.2 - Prob. 69ECh. 11.2 - Prob. 70ECh. 11.2 - Prob. 71ECh. 11.2 - Prob. 72ECh. 11.2 - Prob. 73ECh. 11.2 - Prob. 74ECh. 11.2 - Prob. 75ECh. 11.2 - Prob. 76ECh. 11.2 - Prob. 77ECh. 11.2 - Prob. 78ECh. 11.2 - Finding Unit Vectors In Exercises 79-82, find a...Ch. 11.2 - Prob. 80ECh. 11.2 - Prob. 81ECh. 11.2 - Prob. 82ECh. 11.2 - Prob. 83ECh. 11.2 - Prob. 84ECh. 11.2 - Prob. 85ECh. 11.2 - Prob. 86ECh. 11.2 - Prob. 87ECh. 11.2 - Sketching a Vector In Exercises 87 und 88, sketch...Ch. 11.2 - Prob. 89ECh. 11.2 - Prob. 90ECh. 11.2 - Prob. 91ECh. 11.2 - Prob. 92ECh. 11.2 - Prob. 93ECh. 11.2 - Prob. 94ECh. 11.2 - Prob. 95ECh. 11.2 - Prob. 96ECh. 11.2 - Prob. 97ECh. 11.2 - Tower Guy Wire The guy wire supporting a 100-foot...Ch. 11.2 - Auditorium Lights The lights in an auditorium are...Ch. 11.2 - Prob. 100ECh. 11.2 - Load Supports Find the tension in each of the...Ch. 11.2 - Prob. 102ECh. 11.2 - Prob. 103ECh. 11.3 - Prob. 1ECh. 11.3 - Direction Cosines Consider the vector v=v1,v2,v3....Ch. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Prob. 12ECh. 11.3 - Finding the Angle Between Two Vectors In Exercises...Ch. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Alternative Form of Dot Product In Exercises 19...Ch. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Classifying a TriangleIn Exercises 2730, the...Ch. 11.3 - Classifying a TriangleIn Exercises 2730, the...Ch. 11.3 - Classifying a TriangleIn Exercises 2730, the...Ch. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Prob. 37ECh. 11.3 - Prob. 38ECh. 11.3 - Prob. 39ECh. 11.3 - Finding the Projection of u onto v In Exercises...Ch. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Finding the Projection of u onto v In Exercises...Ch. 11.3 - Prob. 44ECh. 11.3 - Prob. 45ECh. 11.3 - Projection What can be said about the vectors u...Ch. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Prob. 49ECh. 11.3 - RevenueRepeat Exercises 49 after decreasing the...Ch. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - Prob. 55ECh. 11.3 - Prob. 56ECh. 11.3 - Prob. 57ECh. 11.3 - Prob. 58ECh. 11.3 - Prob. 59ECh. 11.3 - Prob. 60ECh. 11.3 - Prob. 61ECh. 11.3 - Prob. 62ECh. 11.3 - Prob. 63ECh. 11.3 - Prob. 64ECh. 11.3 - Prob. 65ECh. 11.3 - Prob. 66ECh. 11.3 - Prob. 67ECh. 11.3 - Prob. 68ECh. 11.3 - Prob. 69ECh. 11.3 - Prob. 70ECh. 11.3 - Bond AngleConsider a regular tetrahedron with...Ch. 11.3 - Prob. 72ECh. 11.3 - Prob. 73ECh. 11.3 - Prob. 74ECh. 11.3 - Prob. 75ECh. 11.4 - CONCEPT CHECK Vectors Explain what uv represents...Ch. 11.4 - CONCEPT CHECK Area Explain how to find the area of...Ch. 11.4 - Prob. 3ECh. 11.4 - Cross Product of Unit VectorsIn Exercises 36, find...Ch. 11.4 - Cross Product of Unit Vectors In Exercises 3-6,...Ch. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Finding Cross Products in Exercises 7-10, find (a)...Ch. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Torque The brakes on a bicycle are applied using a...Ch. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Finding a Triple Scalar Product In Exercises...Ch. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Volume In Exercises 35 and 36, use t triple scalar...Ch. 11.4 - Prob. 36ECh. 11.4 - Volume In Exercises 37 and 38, find the volume of...Ch. 11.4 - Prob. 38ECh. 11.4 - EXPLORING CONCEPTS Comparing Dot Products Identify...Ch. 11.4 - Prob. 40ECh. 11.4 - EXPLORING CONCEPTS Cross ProductTwo nonzero...Ch. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Prob. 44ECh. 11.4 - Prob. 45ECh. 11.4 - Prob. 46ECh. 11.4 - Prob. 47ECh. 11.4 - Prob. 48ECh. 11.4 - Prob. 49ECh. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Prob. 53ECh. 11.4 - Proof Prove that u(vw)=(uw)v(uv)w.Ch. 11.4 - Prob. 55ECh. 11.5 - CONCEPT CHECK Parametric and Symmetric...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Checking Points on a Line In Exercises 5 and 6,...Ch. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Finding Parametric and Symmetric EquationsIn...Ch. 11.5 - Finding Parametric and Symmetric EquationsIn...Ch. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Finding Parametric and Symmetric Equations In...Ch. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Using Parametric and Symmetric EquationsIn...Ch. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Finding a Point of IntersectionIn Exercises 3336,...Ch. 11.5 - Prob. 34ECh. 11.5 - Finding a Point of IntersectionIn Exercises 3336,...Ch. 11.5 - Prob. 36ECh. 11.5 - Prob. 37ECh. 11.5 - Checking Points in a Plane In Exercises 37 and 38,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 3944,...Ch. 11.5 - Prob. 40ECh. 11.5 - Prob. 41ECh. 11.5 - Prob. 42ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 3944,...Ch. 11.5 - Prob. 44ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Prob. 50ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Prob. 52ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 4556,...Ch. 11.5 - Prob. 54ECh. 11.5 - Prob. 55ECh. 11.5 - Prob. 56ECh. 11.5 - Prob. 57ECh. 11.5 - Prob. 58ECh. 11.5 - Finding an Equation of a PlaneIn Exercises 5760,...Ch. 11.5 - Prob. 60ECh. 11.5 - Parallel PlanesIn Exercises 6164, determine...Ch. 11.5 - Prob. 62ECh. 11.5 - Prob. 63ECh. 11.5 - Prob. 64ECh. 11.5 - Intersection of PlanesIn Exercises 6568, (a) find...Ch. 11.5 - Prob. 66ECh. 11.5 - Prob. 67ECh. 11.5 - Prob. 68ECh. 11.5 - Comparing PlanesIn Exercises 6974, determine...Ch. 11.5 - Prob. 70ECh. 11.5 - Prob. 71ECh. 11.5 - Prob. 72ECh. 11.5 - Prob. 73ECh. 11.5 - Prob. 74ECh. 11.5 - Prob. 75ECh. 11.5 - Prob. 76ECh. 11.5 - Prob. 77ECh. 11.5 - Prob. 78ECh. 11.5 - Prob. 79ECh. 11.5 - Prob. 80ECh. 11.5 - Prob. 81ECh. 11.5 - Prob. 82ECh. 11.5 - Intersection of a Plane and a LineIn Exercises...Ch. 11.5 - Prob. 84ECh. 11.5 - Intersection of a Plane and a LineIn Exercises...Ch. 11.5 - Prob. 86ECh. 11.5 - Prob. 87ECh. 11.5 - Prob. 88ECh. 11.5 - Prob. 89ECh. 11.5 - Prob. 90ECh. 11.5 - Prob. 91ECh. 11.5 - Prob. 92ECh. 11.5 - Prob. 93ECh. 11.5 - Prob. 94ECh. 11.5 - Prob. 95ECh. 11.5 - Prob. 96ECh. 11.5 - Prob. 97ECh. 11.5 - Prob. 98ECh. 11.5 - Prob. 99ECh. 11.5 - Prob. 100ECh. 11.5 - Prob. 101ECh. 11.5 - Prob. 102ECh. 11.5 - Prob. 103ECh. 11.5 - Prob. 104ECh. 11.5 - Prob. 105ECh. 11.5 - Prob. 106ECh. 11.5 - Prob. 107ECh. 11.5 - Prob. 108ECh. 11.5 - Prob. 109ECh. 11.5 - Prob. 110ECh. 11.5 - Prob. 111ECh. 11.5 - Prob. 112ECh. 11.5 - Prob. 113ECh. 11.5 - True or False? In Exercises 113118, determine...Ch. 11.5 - Prob. 115ECh. 11.5 - Prob. 116ECh. 11.5 - Prob. 117ECh. 11.5 - Prob. 118ECh. 11.6 - CONCEPT CHECK Quadric Surfaces How are quadric...Ch. 11.6 - Prob. 2ECh. 11.6 - Prob. 3ECh. 11.6 - CONCEPT CHECK Think About It Does every...Ch. 11.6 - Prob. 5ECh. 11.6 - Matching In Exercises 5-10, match the equation...Ch. 11.6 - Prob. 7ECh. 11.6 - Matching In Exercises 5-10, match the equation...Ch. 11.6 - Prob. 9ECh. 11.6 - Matching In Exercises 5-10, match the equation...Ch. 11.6 - Sketching a Surface in SpaceIn Exercises 1114,...Ch. 11.6 - Prob. 12ECh. 11.6 - Prob. 13ECh. 11.6 - Prob. 14ECh. 11.6 - Prob. 15ECh. 11.6 - Prob. 16ECh. 11.6 - Prob. 17ECh. 11.6 - Prob. 18ECh. 11.6 - Prob. 19ECh. 11.6 - Prob. 20ECh. 11.6 - Prob. 21ECh. 11.6 - Prob. 22ECh. 11.6 - Prob. 23ECh. 11.6 - Prob. 24ECh. 11.6 - Prob. 25ECh. 11.6 - Prob. 26ECh. 11.6 - Prob. 27ECh. 11.6 - Prob. 28ECh. 11.6 - Prob. 29ECh. 11.6 - Prob. 30ECh. 11.6 - Prob. 31ECh. 11.6 - Finding an Equation for a Surface of RevolutionIn...Ch. 11.6 - Prob. 33ECh. 11.6 - Prob. 34ECh. 11.6 - Prob. 35ECh. 11.6 - Prob. 36ECh. 11.6 - Finding a Generating CurveIn Exercises 3740, find...Ch. 11.6 - Prob. 38ECh. 11.6 - Prob. 39ECh. 11.6 - Prob. 40ECh. 11.6 - Prob. 41ECh. 11.6 - Prob. 42ECh. 11.6 - Prob. 43ECh. 11.6 - Analyzing a TraceIn Exercises 43 and 44, analyze...Ch. 11.6 - Prob. 45ECh. 11.6 - Prob. 46ECh. 11.6 - Prob. 47ECh. 11.6 - Prob. 48ECh. 11.6 - Using a Hyperbolic ParaboloidDetermine the...Ch. 11.6 - Prob. 50ECh. 11.6 - Prob. 51ECh. 11.7 - CONCEPT CHECK Cylindrical CoordinatesDescribe the...Ch. 11.7 - Prob. 2ECh. 11.7 - Prob. 3ECh. 11.7 - Prob. 4ECh. 11.7 - Prob. 5ECh. 11.7 - Prob. 6ECh. 11.7 - Prob. 7ECh. 11.7 - Prob. 8ECh. 11.7 - Prob. 9ECh. 11.7 - Prob. 10ECh. 11.7 - Prob. 11ECh. 11.7 - Prob. 12ECh. 11.7 - Prob. 13ECh. 11.7 - Prob. 14ECh. 11.7 - Rectangular-to-Cylindrical ConversionIn Exercises...Ch. 11.7 - Prob. 16ECh. 11.7 - Prob. 17ECh. 11.7 - Prob. 18ECh. 11.7 - Rectangular-to-Cylindrical ConversionIn Exercises...Ch. 11.7 - Prob. 20ECh. 11.7 - Prob. 21ECh. 11.7 - Prob. 22ECh. 11.7 - Prob. 23ECh. 11.7 - Prob. 24ECh. 11.7 - Prob. 25ECh. 11.7 - Prob. 26ECh. 11.7 - Prob. 27ECh. 11.7 - Prob. 28ECh. 11.7 - Prob. 29ECh. 11.7 - Prob. 30ECh. 11.7 - Prob. 31ECh. 11.7 - Prob. 32ECh. 11.7 - Prob. 33ECh. 11.7 - Prob. 34ECh. 11.7 - Prob. 35ECh. 11.7 - Prob. 36ECh. 11.7 - Prob. 37ECh. 11.7 - Prob. 38ECh. 11.7 - Prob. 39ECh. 11.7 - Prob. 40ECh. 11.7 - Prob. 41ECh. 11.7 - Prob. 42ECh. 11.7 - Rectangular-to-Spherical ConversionIn Exercises...Ch. 11.7 - Prob. 44ECh. 11.7 - Prob. 45ECh. 11.7 - Prob. 46ECh. 11.7 - Prob. 47ECh. 11.7 - Prob. 48ECh. 11.7 - Prob. 49ECh. 11.7 - Prob. 50ECh. 11.7 - Spherical-to-Rectangular Conversion In Exercises...Ch. 11.7 - Prob. 52ECh. 11.7 - Prob. 53ECh. 11.7 - Prob. 54ECh. 11.7 - Spherical-to-Rectangular Conversion In Exercises...Ch. 11.7 - Prob. 56ECh. 11.7 - Spherical-to-Rectangular Conversion In Exercises...Ch. 11.7 - Prob. 58ECh. 11.7 - Prob. 59ECh. 11.7 - Prob. 60ECh. 11.7 - Prob. 61ECh. 11.7 - Prob. 62ECh. 11.7 - Prob. 63ECh. 11.7 - Prob. 64ECh. 11.7 - Prob. 65ECh. 11.7 - Prob. 66ECh. 11.7 - Prob. 67ECh. 11.7 - Prob. 68ECh. 11.7 - Prob. 69ECh. 11.7 - Prob. 70ECh. 11.7 - Prob. 71ECh. 11.7 - Prob. 72ECh. 11.7 - Prob. 73ECh. 11.7 - MatchingIn Exercises 7176, match the equation...Ch. 11.7 - MatchingIn Exercises 7176, match the equation...Ch. 11.7 - Prob. 76ECh. 11.7 - Prob. 77ECh. 11.7 - Prob. 78ECh. 11.7 - Prob. 79ECh. 11.7 - Prob. 80ECh. 11.7 - Prob. 81ECh. 11.7 - Prob. 82ECh. 11.7 - Converting a Rectangular EquationIn Exercises...Ch. 11.7 - Prob. 84ECh. 11.7 - Prob. 85ECh. 11.7 - Prob. 86ECh. 11.7 - Sketching a Solid In Exercises 8790, sketch the...Ch. 11.7 - Prob. 88ECh. 11.7 - Sketching a SolidIn Exercises 8790, sketch the...Ch. 11.7 - Prob. 90ECh. 11.7 - Prob. 91ECh. 11.7 - Prob. 92ECh. 11.7 - Prob. 93ECh. 11.7 - Prob. 94ECh. 11.7 - Prob. 95ECh. 11.7 - Prob. 96ECh. 11.7 - Prob. 97ECh. 11.7 - Prob. 98ECh. 11.7 - Prob. 99ECh. 11.7 - Prob. 100ECh. 11.7 - Prob. 101ECh. 11.7 - Prob. 102ECh. 11.7 - Intersection of SurfaceIdentify the curve of...Ch. 11.7 - Prob. 104ECh. 11 - Writing Vectors in Different Forms In Exercises 1...Ch. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Finding the Angle Between Two Vectors In Exercises...Ch. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Finding the Projection of u onto v In Exercises 27...Ch. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Finding a Unit VectorFind a unit vector that is...Ch. 11 - AreaFind the area of the parallelogram that has...Ch. 11 - Prob. 35RECh. 11 - VolumeUse the triple scalar product to find the...Ch. 11 - Finding Parametric and Symmetric Equations In...Ch. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Prob. 42RECh. 11 - Finding an Equation of a Plane In Exercises 41-44,...Ch. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Distance Find the distance between the planes...Ch. 11 - Distance Find the distance between the point...Ch. 11 - Prob. 49RECh. 11 - Prob. 50RECh. 11 - Prob. 51RECh. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Prob. 57RECh. 11 - Prob. 58RECh. 11 - Prob. 59RECh. 11 - Prob. 60RECh. 11 - Prob. 61RECh. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Cylindrical-to-Rectangular ConversionIn Exercises...Ch. 11 - Prob. 65RECh. 11 - Spherical-to-Rectangular ConversionIn Exercises 65...Ch. 11 - Converting a Rectangular EquationIn Exercises 67...Ch. 11 - Prob. 68RECh. 11 - Cylindrical-to-Rectangular Conversion In Exercises...Ch. 11 - Cylindrical-to- Rectangular ConversionIn Exercises...Ch. 11 - Prob. 71RECh. 11 - Spherical-to-Rectangular Conversion In Exercises...Ch. 11 - ProofUsing vectors, prove the Law of Sines: If a,...Ch. 11 - Prob. 2PSCh. 11 - Prob. 3PSCh. 11 - Proof Using vectors, prove that the diagonals of a...Ch. 11 - Distance (a) Find the shortest distance between...Ch. 11 - Prob. 6PSCh. 11 - Volume (a) Find the volume of the solid bounded...Ch. 11 - Prob. 8PSCh. 11 - Prob. 9PSCh. 11 - Prob. 10PSCh. 11 - Prob. 11PSCh. 11 - Prob. 12PSCh. 11 - Prob. 13PSCh. 11 - Prob. 14PSCh. 11 - Prob. 15PSCh. 11 - Prob. 16PSCh. 11 - Distance Between a Point and a PlaneConsider the...Ch. 11 - Prob. 18PSCh. 11 - Prob. 19PS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Provethat a) prove that for any irrational numbers there exists? asequence of rational numbers Xn converg to S. b) let S: RR be a sunctions-t. f(x)=(x-1) arc tan (x), xe Q 3(x-1) 1+x² x&Q Show that lim f(x)= 0 14x C) For any set A define the set -A=yarrow_forwardQ2: Find the interval and radius of convergence for the following series: Σ n=1 (-1)η-1 xn narrow_forward8. Evaluate arctan x dx a) xartanx 2 2 In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d) (arctanx)² + C 2 9) Evaluate Inx³ dx 3 a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C - x 10) Determine which integral is obtained when the substitution x = So¹² √1 - x²dx sine is made in the integral πT π π a) √ sin cos e de b) √ cos² de c) c Ꮎ Ꮎ cos² 0 de c) cos e de d) for cos² e de πT 11. Evaluate tan³xdx 1 a) b) c) [1 - In 2] 2 2 c) [1 − In2] d)½½[1+ In 2]arrow_forward
- 12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward
- 2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forwardQuestion 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward
- 3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
03 - The Cartesian coordinate system; Author: Technion;https://www.youtube.com/watch?v=hOgKEplCx5E;License: Standard YouTube License, CC-BY
What is the Cartesian Coordinate System? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=mgx0kT5UbKk;License: Standard YouTube License, CC-BY